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Questions

Qu.2.1 Momentum operator

Show that the state ¢, (r) = exp(ik-r) is an eigenstate of the momentum

operator p = —ihV and find the eigenvalue.

phad = -ihVe

1]
|
L\Q)
(DJ
™
-\
|
)
=+
e
e
X >
+
o
[
dL
w\o
™~

7

= —)JK éky e

IS B ‘:A «'F‘A,\
x —f—ikj CF \r_«j +1Kz C, yz)

>

"= kR

So/ ”J(F( F) IS an Gl(jensﬁfté OJC /]; with ijchva‘uﬁ hk

kax]

= fke

Qu.2.2 Density of states for free electrons

(a) What is the fermi wavevector and fermi energy as a function of
particle density for a free electron gas in one and two dimensions (define
density appropriately)?

(b) Calculate the density of states in energy for free electrons in one and

two dimensions. [Answer:(2m/mh?) x (h?/2mE) 3, (d=1); (m/7h?), d=2;
(m/m2h?) x (2771E/h2)%, d=3 ]
(c) Show how the 3D density of states can be re-written as

(3/2)(n/Er)(E/EF)?

with n = N/V.
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Qu.2.3 Thermodynamic properties of a free electron metal
Derive the free electron formula for the fermi energy Er, the fermi
wavevector kp and the density of states at the fermi level g(EF).

Within the free electron model at zero temperature:

Show that the total energy for N electrons is E = §NE .

Calculate the pressure, p, using p = Zg where (2 is the volume.

Calculate the bulk modulus B = —Q) ((ilg

1mm is monovalent and has an atomic concentration of 1.402 x
0 Compare the bulk modulus calculated above with the experimen-
tal value of 3.7 x 10° Pa.

Estimate g(Er) for magnesium, which has a valence of 2 and an atomic
concentration of 4.3 x 1028 m™3. Use this value to estimate the asymptotic
low temperature specific heat, compared to the experimental value of ¢, /T =
1.3mJ mol ' K2,
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Qu.2.4 Acoustic phonon dispersion in the monatomic chain By sub-
stituting Eq. (2.24) in Eq. (5.4) derive the dispersion relation Eq. (2.25) for

the one-dimensional monatomic chain.

We guess that the solution is a wave, of the form
() = uocos(qra — w(g)! (2.21)

of algebra will show that the solution Eq. (2.24) exists provided that

mwz(Q) =2K(1 — cos(qa)) = 4K Sinz(%)

and a familiar example is that of sound waves described by the classical
equation of motion for the displacement u (e.g. for waves along a string)

—KV?u+pii+~yi=F

where K is the stiffness, p the mass density, and v a damping parameter.
F(r,t) is the external force applied to the medium.
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Qu.2.5 Acoustic and optic phonons in the diatomic chain

This question involves somewhat messy algebra to derive the dispersion
relation for the diatomic chain.

In the diatomic chain, we take the unit cell to be of length a, and take
x4 and zg to be the coordinates of the A and B atoms within the unit cell.
Hence, in the n'" cell,

TnA=MNa+T4g, ThB=na+Ig . (2.46)

In the equations of motionEq. (2.30), look for solutions of the form

Una = €a(q) expi(qrn,a — w(q)t) + €5(q) expi(—qrpo +w(q)t)  (2.47)

where @ = A or B, and e, are complex numbers that give the amplitude
and phase of the oscillation of the two atoms.

Separating out the terms that have the same time dependence, show that
(for equal masses, mgq = mp = m)

mw?(q)ea(q) = Daa(g)ea(q) + Dap(q)en(q)
mw?(q)ep(q) Dpa(a)ea(q) + Dpp(a)es(q) (2.48)

where

Daalq) = Dpp(q) = K+ K’ , (2.49)

—D.—lB((I) = K €xp i'q(rrLB = rnu—\) + 1‘., €xp iq(7'71—l.B T = "nu-\)
—Dpa ((1) K exp i(I("n.A - 71n‘B) + K’ exp ‘iQ(Tn+l‘A - rn.B) (2')0)
Check that Dap = Dp 4.

The 2x2 matrix equation can have a non-trivial solution if the determi-
nant vanishes:

Daalq) — mw?(q) Dag(q) _ =
Dpa(q) Dpg(q) —mw?(q) |~ 0 (2:51)

Hence show that the frequencies of the modes are given by

mw?(q) = K+ K' + (K + K')> — 4KK’ sin‘z(%)]l/2

Sketch the dispersion relations when K/K' = 2.
Discuss what happens if K = K'.

masses and two different spring constants (see Fig. 2.3). We can now write
down two equations of motion, one for each type of atom:

Puna

. K(unp = tna) + K'(tn-—1,8 — tna)

ma

K'(upt14 — unp) + K (tn, A — unB) (2.30)
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Qu.2.6 Lattice specific heat

From Eq. (2.44) derive the formula for the Debye specific heat Eq. (2.45).

Evaluate the integral at high temperature T > 0p, and therefore deter-
mine the high temperature behawour of the specific heat.

Using the formula [;° dx 2 , determine the low temperature
behaviour of the Debye spec

Sketch the heat capacity formulae from the Debye and Einstein models
and compare them.

At low temperature, the contribution of optical modes is small, and the
Debye spectrum is appropriate. This gives

WD Vw? hw
— e o S 9 A
UD /0 dcu 2’/T2’U3 ehw/kBT _ 1 . (~.44)

as T* and the specific heat as T at low temperatures. The explicit formula
can be obtained as

v —onkg (LY 177 gp_le 2.45
v = B(9D> /0 "r(ez—l)z , (2.45)

where the Debye temperature is p = hw/kp. We have multiplied by 3 to
account for the three acoustic branches.
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C})a)p’ter 3 Dlﬁfac‘bon Condi‘tiOﬂS and BYVHOuTrL Zones

Qu.3.1 BCC and FCC lattices

Show that the reciprocal lattice of a body centred cubic lattice (BCC) of
spacing a is a face centred cubic (FCC) lattice of spacing 47 /a; and that the

reciprocal lattice of a FCC lattice of spacing a is a BCC lattice of spacing
47 /a.
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Qu.3.2 Reciprocal lattice cell volume
Show that the volume of the primitive unit cell of the reciprocal lattice is

(27)3 /Qeer, where Qe is the volume of the primitive unit cell of the crystal.
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Qu.3.3 Bragg’s law

(a) Show that the reciprocal lattice vector G = hby + kbg + by is
perpendicular to the (hkl) plane of the crystal lattice.
(b) Show that the distance between two adjacent (hkl) planes is 27/|G].
(c) Show that the condition Eq. (3.12) may be written as

™

Tsind = s (3.14)

d
where A = 27/k, and 0 is the angle between the incident beam and the
crystal plane.

are equal, and the Bragg condition requires their difference to be a reciprocal
lattice vector k — k, = G. The combination of the two can be rewritten as

(3.12)
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Chaftcr 4 Electronic  Structure 77)eorj

Qu.4.1 Bloch’s theorem Prove Bloch’s theorem by operating with the
translation operator on H and using the periodic symmetry of the poten-

tial. Show furthermore that TRTr: = Tr'Tr = Trir’ ; the translation

operators commute with themselves.
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Tele = Taww . (Cortity of Touwleton)

That s TiTe = T Te = Taw.

Qu.4.2 Another proof of Bloch’s theorem

A more elegant way to prove Bloch’s theorem is to note that the trans-
lation operator can be written

Tg = o~ iPR/R

bl

where P is the momentum operator. (If you don’t know how to do this,
make the replacement P = —thV, and check that the operator generates
the infinite Taylor series expansion of f(r + R).) By multiplying by the ket
< k| (an eigenfunction of momentum), show that either < k|i) >= 0, or
c(R) = e &R,
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Qu.4.3 One-dimensional band

Consider a one-dimensional system which is filled up to the first Brillouin
zone boundary at k = 7/a, and assume that there is a small gap produced
by a single Fourier component of the lattice potential U = Ug—_y7/, (small
meaning that U/ Eg K 1). Consider momenta close to the zone boundary,

show that a good approximation for the energy dispersion of the bands is

U2 .
EFE=Fy|1l%+ ﬁ—}—ﬁlmz

0

— 0 S ) : P
where Ey = E%K and k = (7/a)(1 + x), with z < 1.

Evaluate the change in electronic energy for a small gap (at zero tem-

perature)
Egee= Y, [E(k;U)— E(k;U =0)]
k occupied

to leading order in U/Ey. (Hint: the result is non-analytic - don’t try a
Taylor series in U.)
We shall be using this result later to understand the Peierls instability of a
one-dimensional system.
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Qu.4.4 Some one-dimensional chemistry

Consider a diatomic lattice of two atoms labelled A and B in a lattice
with period a, at the positions +a/4(1 — d) in a one-dimensional array with
overall period a.

Using the NFE approximation valid for momenta near the zone boundary
k — m/a, show that the solution of Eq. (4.47) leads to:

(a) a gap on the zone boundary is 2|U),r/ﬂ|. and
(b) wavefunctions that satisfy c;; /(,\ wlal— +U/|U| as k — 7/a.

Hence show that the probability density for the electronic states at k =
7/a take the form

P o, I
WP o« cos?(CE 4

=)
;).

. . 9, MT
= (r)* 51112(7+

1)
a 2
1)
2

Show that the potential can be written
T\ A ) B
Uz /o = sin(—- )(U) sl ¥ U)ﬂ/a) icos(— )(UZTr/a —Usrsa)»  (4144)

where

gAP _ %/dr g me/s by (4.145)

27 /a

The system contains an average of one electron per atom, or equivalently
two electrons per unit cell. Discuss the values of the energy gaps and plot
the charge densities corresponding to the highest filled electron state and
the lowest empty electron state in the two cases; (a) § = 0, Uy # Up; (b)
identical atoms, Uy = Up, and 0 # 0.

Explain how this provides a simple model of either an ionic or covalent
solid.

Eﬂ —F UK Ck -0
Uy E) x—F Ck-K

(2) The Solution exists
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Qu.4.5 Tight binding for BCC and FCC lattices
Show that the tightbinding bandstructure for a body centred cubic lattice
(include only the hopping to the eight nearest neighbours) is

1 1 1
E(k) =¢e + 8t cos(ikiva) cos(ikya) cos(ikza) , (4.146)

and for the face centred cubic lattice (twelve nearest neighbours)

1 1 1 1 1
Ek) = eo+4t[cos(§kma) cos(;kya)—i—cos(ik‘ya) cos(ikza)—i—cos(ik,za) 005( kya)] .
(4. 147)
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Qu.4.6 Pseudopotential
Show that < x|f, >= 0 if we choose £, =< f,|k >.

The pseudopotential is not unique. Show that the valence eigenvalues of
a Hamiltonian H + Vg are the same for any operator of the form

VR¢:Z < Fn|¢> fn s

where the F), are arbitrary functions.

7> = ]¥> - Z)Bn fix>
= B> — Z <:|E> 5>
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Qu.4.7 Hartree-Fock theory for the two level atom

Show that the Hartree-Fock total energy Eq. (4.83) applied to the two-
level atom model of Sec. 4.2.1 gives exactly the direct and exchange energy
calculated in Eq. (4.75) .

< H >g7=F1 + Es+ < 12|V[12 > + < 21|V[12 > |

2

: o1 et et
< H >g=)Y_ <il(T+Uipn|i > +5 d i< zy|;|zy > — < zy|7|j1 > o0
i ij & i

(4.83)
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Qu.4.8 Hartree Fock equations

This problem is just to derive the Hartree-Fock equations shown above.
The first part is quite messy, because of the need to deal with determinants.
This kind of unpleasant algebra is simplified considerably by using a second-
quantised formalism, which is why that was invented.

Evaluate the energy in the form

& s, _ < VY|H|V >
EEP RIS

with the determinantal wavefunction of Eq. (4.82) using an orthonormal set
of orbitals ;.
Answer:

2

. . I i B
< H >y= Z < i|(T+Uion|t > +§ ; < 1/|E|1/ > —< I‘]|I.—U|JI‘ > 0g;0,

(4.148)
Show that by minimising with respect to the ¢ one obtains the Hartree-
Fock equations

K _.
[_ 2m vz + (Jil)ll(r) + (]('()ll[(r)] U'i(r)

. (’2 | , , -
- ¥ / (lr”r ] V5 (0)i(x) Y (r)do,0, = €thi(r)  (4.149)
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and that the total energy can be written
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Qu.4.9 Band structure in the Hartree-Fock approximation

Using Eq. (4.91), calculate the density of states near the Fermi energy
to leading order in (E — Er)/Ep. If this result were physically correct what
would be the temperature-dependence of the electronic specific heat at low
temperature?

The logarithmic singularity you found is not found in better theories
than Hartree-Fock. It arises mathematically from the long-range Coulomb
interaction (and in particular the k=2 divergence) which vanishes when we
allow for processes to screen the interaction and make it short-range.

() h2k2_/ dk'  Awe® oy 11— n‘1+w‘_
2m e (2m)3 [k —K/|2 2 r -z

W2k 2e%kp

T

F(k/kr) ,

- (1-x"2)

4= F[x ] 1= ——— Log[Abs[1+X]]

4 x

1 - x

Plot[f[x], {x, @, 5}]
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7
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(1-x) x (1-22) (%*_

4x (1+x)

inf106]= g1l[x ] : [

(-1+x) < (1-) (ﬁ-—

2 = |-
82[x ] [ 4x (1+x)

Plot[{gl[x], g2[x]}, {x, @, 3}]




Qu.4.10 Ferromagnetism in the HF approximation

Previously, we considered the unpolarised spin state, which is a param-
agnet. Now consider a fully spin polarised state at the same density: the
Hartree-Fock Slater determinant corresponds to singly occupying each state
in the Fermi sphere. In analogy to Eq. (4.93), compute the total energy
of the spin polarised state, and show that this is lower in energy than the
unpolarised state if s > 5.45 in the Hartree-Fock approximation.

The physics here is correct, but the number is very wrong, and the para-
magnetic state is believed to be stable up to rs ~ 75. The ferromagnet has
larger kinetic energy, because at a fixed density you have always a larger

kr (by a factor of 21/3) if only one spin subband is filled. The exchange
energy is only between parallel spins and is negative, so prefers spin-aligned
states, and the interaction terms become proportionately more important at
low densities (large rs)

The total energy can be performed by integration over k < kg It is
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Qu.4.11 Thomas-Fermi screening
Check the formulae in Eq. (4.133) and Eq. (4.134). Suppose that the
potential veyy = Q/r, show that the induced charge density is then of the
form
e T/€

5 (1
n(r) o "

and identify the screening length &.

295 A_1)2 .

_ & _ 4me
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3 2 2
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in[124]= Inte te| — ~
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r 2
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Qu.4.12 Generalised one-dimensional band theory

Many of the general features of electron bands in a periodic solid can be
appreciated without recourse to a detailed model of the lattice potential. In
this problem the scattering from the lattice potential is treated in a general
way by describing it in terms of wave relfection and transmission. The
algebra in the first two parts is messy - but the answer given in section (b)
can be used to answer section (c).

Consider a 1D solid, lattice constant a, made of “building blocks” (—a/2 <
x < a/2) that scatter plane waves with a reflection coefficient r and trans-
mission coefficient ¢ (|| + |¢t|*> = 1) as shown.

Wave incident from left Wave incident from right
e L e

r e-in : . > < r e

< . . L

X=-0/2 Xx=0/2 X=-0/2 Xx=0/2

The energy of the plane wave is written as ¢ = h2K?/2m. In the solid,
the building blocks are stacked together indefinitely in the x-direction.

(a) Write the solution to the Schrodinger equation in the solid ¢ (z), as a
linear combination of () and ;(x) and use Bloch’s theorem to relate the
wavefunction at each side of the building block (the same theorem applies
to the gradient 1’).

(@ + a) = e*p(x) (x4 a) = e*9 ()

Hence, show

2 _ 2

t“—r° ,p 1

cos(ka) = ———e'Ka 4 —¢~iKa

2t 2t

(b) If the transmission coefficient is ¢t = [t|e?, it can be shown that
r = =i|r|e?® (it is relatively easy to demonstrate this graphically for the
special case when the scattering is localised at x = 0 and one can match v

at the origin). Use this result to eliminate r and show

cos(ka + 9)
1t

= cos ka

(c) Since [t| < 1, this result shows there are values of K (and hence ¢)
for which no Bloch states exist. Demonstrate this by sketching the left-hand
side as a function of K (or preferably ¢) Use your sketch to illustrate the
behaviour for: (i) strong scattering; (ii) weak scattering.

Explain why, in general, electron bands tend to get wider and their gaps
narrower as the electron energy increases.
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Qu.5.1 LCR circuit

This question on electrical circuits is to remind you of the basic ideas of
a dynamical response function, resonance, and dissipation.

An electrical circuit consists of an inductance L, resistance R and ca-
pacitance C' in series, driven by a voltage source V (t) = V, cos(wt). Show
that the charge Q(t) on the capacitor satisfies the equation

Li+Rj+q/C=V(t) , (5.108)
and use it to define the complex susceptibility from
q(w) = x(W)V(w) (5.109)

Show that the forced solution of this equation is

‘/() 0S8 w' — ¢
q(t) = co(wt — ¢) _ (5.110)

{(—wQL + %)2 + (wR)‘-’} :

where

wR
wiL-1/C

Show that the mean rate of power dissipation is

tan(¢p) =

wVy sin(¢)

e
[z 8)" o]

%% (5.112)

Sketch the real and imaginary parts of y as a function of frequency, for
the cases Q@ < 1, Q = 1 and Q > 1, where Q) = (I/R)(L/C)% is the “quality
factor”.

Where are the poles of x in the complex w plane?.

It is of course more usual to work with the complex impedance Z =
1/(—iwy), but this is a little obscuring because then the equation of motion

for the current has a source term V.
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Qu.5.2 Landau theory of phase transitions

An expansion of the free energy as a power series in a collective order
parameter is called a Landau or Ginzburg-Landau expansion. It is very
commonly used as a simple mean-field description of a phase transition.
Here we use it to describe a ferro-electric.

A ferroelectric crystal is one that supports a macroscopic polarisation
P — that usually arises because the underlying crystal structure does no
have inversion symmetry. However, as temperature or pressure is changed,
the crystal may recover the inversion symmetry. This can be modelled by
Landau’s theory of second order phase transitions, where we postulate a
form for the Free energy density (per unit volume)

1 1 1 X
F= 5(1,132 + 1bP4 + 6"P0 + ... (5.113)

where the coefficient a = a,(T — T,) is temperature dependent, and all the
other coefficients are constant. Although the polarisation P is of course a
vector, we assume that it can point only in a symmetry direction of the
crystal, and so it is replace by a scalar.

(a) Assume that b > 0 and ¢ = 0. Use Eq. (5.113) to determine the form
for the equilibrium P(T).

(b) Including in F the energy of the polarisation coupled to an external
electric field F, determine the dielectric susceptibility y = % both above
and below the critical temperature.

(¢) Sketch curves for P(T), x~*(T), and x(T).

(d) In a different material, the free energy is described by a similar form
to Eq. (5.113), but with b < 0 and ¢ > 0. By sketching F at different
temperatures, discuss the behaviour of the equilibrium polarisation and the
linear susceptibility, contrasting the results with those found in (c).

@ F = 5oP + 5P
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La P +4bp"
[ equilibrivm <%§ =0, <§—g1> >0
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Qu.5.3 Reflectivity of metals

The phase velocity of light in a conducting medium is the speed of light
divided by the complex dielectric constant N(w) = e(w)!/?
use for € the Drude result

where we may

w?

In a good Drude metal, we have 1/7 < wp.
Sketch curves of

Consider a light wave with the electric field polarised in the z—direction
at normal incidence from the vacuum on a good Drude metal (with 1/7 <
wp) occupying the region z > 0. In the vacuum (z < 0), the incident £y and
reflected Fo waves give rise to a field

E, = Ejexp(iw[z/c — t]) + Eyexp(—iw[z/c+ t]) (5.115)
whereas in the medium, the electric field is
E, = Eyexp(iw[N(w)z/c—t]) . (5.116)

Matching the electric and magnetic fields on the boundary, show that

Ey = E1+Ey (5.117)
NEy = E1-E, , (5.118)

and hence show that the reflection coefficient satisfies

| B2 ‘1—N2

B=1%] =litw

(5.119)

Using the Drude formula above, show that

w

1/2
R =~ 1—2(27m(0)> forw<1/7 (5.120)

2
~ 1- — for 1/7 < w K wp (5.121)
WpT

~ 0 for w, K w (5.122)

and sketch the reflectivity R(w).

Deducing the complex conductivity by measuring the reflectivity is a stan-
dard experimental technique. To get both real and imaginary parts from a
measurement of only |R| (rather than the complex R) requires employment
of the Kramers-Krionig relations.
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Qu.5.4 Phonons

From Eq. (5.8) construct Sy in the limit that v — 0. Use the Kramers
Kronig relation to then reconstruct £y from Sy in the same limit

1
—pw? + iyw + K¢?
" dw' Sk(W')
T oW —w
dw' Re(w')

T W —w
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Qu.5.5 Screened Coulomb interaction
Consider a nucleus of charge Z producing an potential

A
‘f/;e;vt(q) = -
q

Using the long-wavelength limit of the dielectric function, show that the
screened potential satisfies

2
‘/scr(q = O) = _gQEF

where {2 is the volume of the unit cell, and EF is the Fermi energy for Z
free electrons per unit cell.
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Qu.5.6 Peierls transition
By rewriting the term containing ni4q (replace k +q — —k’ and then
relabel k” as k), show that the static density response function can be written

1
Xo(q,0) =2 ——— . (5.123)
k<kp Ckta Tk

In one dimension, make a linear approximation to the electronic disper-
sion near kp, i.e. ex = vp|k|, and consider the response for ¢ = 2kp + p,
where p < 2kp. By considering terms in the sum over k near k ~ —kp,
show that

Xo(2kp + p) =~ : In 2k . (5.124)
2Tvp P

Explain why this result suggests that a one-dimensional metal will be
unstable to a lattice distortion with wavevector 2kp.

This result is exactly analogous to the nonanalytic behaviour we saw in
Question 2.5. There we found that the energy gain from opening a gap U at
the chemical potential was ~ U?In |Ep/U|, when we chose the periodicity of
the potential to be exactly 2kp. Remember that linear response theory will

predict that

1
U= —pVest + Ex_po (5.125)

which after minimisation, yields
1 12
Umin = _§XV;315 (5126)
In our linear response calculation, x,(2kp) is singular, indicating as
usual the failure of non-degenerate perturbation theory, whereas the exact

calculation done earlier showed that xo(2kp) < In|Ep/Veyt| — a result that
could perhaps have been guessed from Eq. (5.124).
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Qu.5.7 Optical properties
Discuss why, at optical frequencies, glass is transparent, and silver is

shiny, while graphite appears black, and powdered sugar is white.
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Qu.5.8 Metals and insulators
Explain the differences between a metal and an insulator. Your discus-
sion should include reference to: single particle properties; screening of the

Coulomb interaction; optical properties; and electrical and thermal proper-
ties.
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C}W\P‘bek 6 /V\ajhetism

Qu.6.1 Exchange

Consider single-particle wavefunctions on two neighbouring identical atoms
Y4, ¥p, which may be assumed real. These are to be used as the basis for a
two-electron state. Show that the charge density in a singlet (triplet) state
made out of the two orbitals is given by

p(r) = [ba(r)? + [0n(r)P £2 < walds > va(r)ds() . (6.32)

Explain why the singlet state will usually be lower in energy.
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Qu.6.2 One-dimensional spin waves
Assume a one-dimensional chain of spins, precessing according to Eq.
(6.30). By considering two neighbours of the n” spin, as in Fig. 6.8, each at
relative angles 6, show that the rate of precession according to Eq. (6.30) is
_4JS

w T(l—cosﬁ) . (6.33)

Hence show that for a spin wave of wavevector ¢, the dispersion is

hw = 4J5(1 — cos(qa))
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Qu.6.3 Colossal magnetoresistance

This question introduces an active subject of current research: although
lengthy, it involves nothing beyond the material discussed in the lectures.
In a material like that shown in Fig. 6.10 the magnetism arises from a
mechanism called double exchange, which is a version of itinerant ex-
change but involving two types of d-bands. The prototype compound is
Lay_,Sr, MnQOs3, where the valence of La is 3+ and S is 2+. This is a cubic
(perovskite) crystal structure where the Mn ions are nominally equidistant
from six oxygen neighbours in three cartesian directions.

(a) Explain why the valence of Mn in the compound Laj_,Sr,MnOs is
expected to be between 3+ and 4+ and that the occupancy of the d-levels
is expected to be 4 — x electrons per Mn ion.

(b) The degeneracy of the 5 d-levels in the free ion is split by the cubic
environment into a low energy three-fold degenerate subset (whose notation
is ta4) and a higher energy doubly degenerate orbital set (e4). Explain why
the spin configurations of these levels for the Mn3t and Mn*t ions are
expected to be as shown in Fig. 6.12.

(c) The lowest three electron states can be regarded as forming a classical
spin §' = % which has negligible hopping from site to site, whereas the highest
state is potentially itinerant. Now consider two neighbouring sites ¢, j in the

ey =X

by S =
Mn3" Mnit

Figure 6.12:

solid, each having the same “core” spin S, and sharing a single itinerant e,
electron, that has a tight-binding matrix element

t =< ¢, (r — Ri)|H|oe, (r — R;) > (6.35)

for hopping from site to site.
Explain the origin of the terms

Hint = — JZsL Si +Jx ZS S5 (6.36)

in the total Hamiltonian (§;) is the spin of the e, electron) and suggest
relative magnitudes of U, Jand .J,.°
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(d) Consider two neighbouring core spins S; S; that are at a relative
angle 0;;. By considering that the spin wavefunction of the itinerant electron
must, for J > t, be always aligned with the local core spin S, explain why
the Schrodinger equation for the itinerant electron can be simplified to one
in which the tight-binding hopping matrix element from site i to site j is
replaced by

0y
t,sz = tCOS(TJ) . (637)

To do this, you may wish to note that under a rotation by an angle 6,
the spin wavefunction transforms as

|+'>\ _( cosd sin | 1>

[ }/> —sing cos 5 | 4>

(6.38)

(e) Sketch the density of states of the itinerant electrons for different
alignments of the core spins S:
ferromagnetic (all core spins aligned),
antiferromagnetic (all neighbouring core spins anti-aligned),

9 . . . . . .
In second-quantised notation, the full Hamiltonian can be written as

H=t Y &o+U) fichico=JY 8-Si+Jo ) Si-S
i 7 1]

ij=n.n.o

T T

Lay_,SrMnO; -

LaySt;MnO;3
x=015 1
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2 -
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i3 =
== Q

200 ' 300
Temperature (K

Figure 6.13: Resistivity as a function of temperature and magnetic field for
a series of samples of doped manganese oxides with different compositions.
The ferromagnetic transition temperatures 7, are marked by the arrows.

paramagnetic (core spins randomly aligned).

Discuss how the total Free energies of these states differ, and suggest what is
the magnetic ground state when x = 0; and when tx > J,; give rough esti-
mates of the transition temperatures of the ordered magnetic states toward
high temperature paramagnetism.

(f) Fig. 6.13 shows the resistivity as a function of temperature of several
samples of Laj_,Sr,MnQOs with different concentrations x, as well as the
magnetic-field-dependence of the resistivity (which gives rise to the label
“colossal” magnetoresistance).!'? Discuss this data in light of the results
above.
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Cho\l)‘ter / Electrons and P)mmns

Qu.7.1 Electron-phonon interaction

Write short notes explaining the physical effects that may be produced
by the electron-phonon interaction in metals.

Phonon is quantized lattice vibration. The scattering of electrons
around moving atoms’ potential is called electron-phonon interaction.

Electron-phonon interaction will lead to effective interaction between
electrons. Since the lattice distortion has longer characteristic time
than fluctuations in electron gas, this produces correlation of the
electron density waves as if there’s an attractive potential between
electrons.

There will also be enhancement of effective mass around Fermi
surface, since the electron-phonon coupling gives substantial
renormalization of the energy spectrum near Fermi surface.

Two electrons near Fermi surface might bind together to form a pair
since they have effective attraction. The fermi sea give the possibility
that the electron pairs persists even with arbitrary weak interaction.



Qu.7.2 Electronic mass enhancement

The integral in Eq. (7.10) can be approximated by neglecting the mo-
mentum dependence of the coupling constant g, and replacing the phonon
frequency by the characteristic scale wp. Show that in this case the integral
becomes

(7.24)

, [H
gz/ de'N(€)
J—00

@—al-uh

where N (¢) is the density of states in energy® . Since the dominant part
of the integral comes from energies near the Fermi energy, we can usually
replace N (e) by N(u). Making this approximation, show that

(a) For energies |ex — p| < wp,

ek’ — 1
€k —p=——
L Y

where ,
yo TN
= 2
wh

(b) For energies |ex — | several times wp the correction to ey is of order

2
Yp

A 5 (€x — 1) (7.27)

(e — p)?

SWe change notation from the g(¢) we have used before to avoid confusion with the
coupling constant gq

Ek—lu,zeko—,u—/ : _M~ (710)
J 27)3 (ex —ew)? —w(k — k)2’

Bj aﬂ)roximaﬁm e — g, w— Wy
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When the phonon frequencies are not considered vanishingly small, (26.27) differs appreciably
from (26.56) only for those values of the integration variable k' for which &, is within O(fiwp) of
&,. Since hwy, is small compared with &, the region of k’ for which the correction is appreciable
is a shell about the surface &, = &, that is thin (on the scale of the dimensions of the zone). We
may exploit this fact to simplify the correction term by writing the integral over k' as an integral
over energy &', and an integral over the constant-energy surfaces &, = &'. As &' varies, the variation
of the term in (&, — &')* in the denominator of (26.27) is very important, since the denominator
vanishes within this range. However, the remaining &’ dependence of the integrand (due to the
fact that k' is constrained to a surface of energy &) leads to very little variation as & varies within
O(hwp) of &g It is thus a good approximation to replace the k' integrations over the surfaces
&, = & by integrations over the single surface &, = &,. After this replacement, the only &’ depen-
dence left comes from the explicit term in & in the denominator. The integral over &' is then easily
performed.
(2) Show that under this approximation,

&, = &IF _ds 4re*
v &g =8y 87!3'08/61(] |k — K 2 AT koz

[&r — & — ho(k — K|

. (265
[er — & + ho(k — k)| s

X ;fza}(k — k) In

1. The value of & and the shape of the Fermi surface are unaffected by the ionic
correction to the screening; i.e., they are correctly given by ignoring the second term
within the braces in (26.27).

2. When &, is close to & on the scale of hwp, one finds that

&7 F &

el v o

(26.28)

where &TF is the energy calculated in the absence of the ionic correction to the
screening, and A is given by an integral over the Fermi surface:

- ds’ 4me? (26.29
"= 8 (K — K + kgt e

In particular, this means that the phonon correction to the electronic velocity and
density of levels at the Fermi surface are given by?°

1oe 1
W= &~ T+

g(&r) = (1 + A)g°(&p). (26.30)

These corrections apply only to one-electron energy levels well within fwjp of &p.
However, at temperatures well below room temperature (kzT « fwp) these are pre-
cisely the electronic levels that determine the great bulk of metallic properties, and
therefore corrections due to ionic screening must be taken into account. This becomes
particularly clear when we estimate the size of A




Qu.7.3 Cooper’s problem

For those who want to work out a non-trivial problem using operator
techniques, this is Cooper’s problem done that way. It is good practice
of your operator technique to go through the following manipulations of
H|¢ye >, although this is pretty hard. But if you follow the rules, it all
works out in about a page of algebra.

The wavefunction of a Cooper pair of electrons added to the Fermi sea

o >= Y guélgél  |FS > (7.28)
k>kp

where only terms in the sum for k > kp are allowed.

SWe change notation from the g(e) we have used before to avoid confusion with the
coupling constant gq




We can now test out the pair wavefunction with the Hamiltonian

H = Zep — Zv(p( ol (7.29)
ppq

applied to the two electrons in question, but leaving the fermi sea inert. V,
is here taken to be an attractive interaction.
Show that the first term in Eq. (7.29) operating on | > is

Hlbe > = Y epgiélobpotisél  |FS >
pko

> 2ergrilyll |FS > . (7.30)
k

(Hint: the trick in all of these operator manipulations is to move the an-
nahilation operator to the RHS, so that it can destroy the vacuum state.
Along the way, it has to anticommute with the creation operators initially
on its right and these anticommutators always generate an extra J-function.
The two terms in the last equation come because we must have either p = k,
o=1,orp=—k, o =]-and e_, = ¢,. Remember that for this toy problem
alone, we don’t apply the Hamiltonian to the Fermi sea.)

Similarly, show that the operation of the second term in Eq. (7.29) gives

Hint|e > Z VqQI\ppa' p’g’()p+q.lv6cr1‘6p’fq.fk60’,l,|FS > (7.31)
kpp'qoo’

S Viewgwehel  |FS> (7.32)
kk'>kp

Getting to the final equation involves a little crafty relabelling of the mo-
menta in the sum.
This gets us to the two-particle Schrodinger equation Eq. (7.19).

In the momentum representation, the two particle state can be an eigen-
state of energy E if

(E— 2€k)gk = Z Vk—k’gk/ . (719)
k' >kp
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1 An infinite one-dimensional solid consists of a dimerised chain of identical
atoms as shown in the figure, containing one electron per atom. The band
structure is to be computed using the ”tight-binding” (linear combination of
atomic orbitals) method, with a basis consisting only of a single s-like orbital ¢(z)
on each atom. By reference to the figure, the onsite and two nearest neighbour
matrix elements of the Hamiltonian are defined as

(o(x) H |p(z)) = Eo
(0()| H |p(z — af2+0)) =ty =t + 0t ,
(p(x —a/2+0)|H|p(x —a)) =ta =1t -0t .

Further neighbour matrix elements are to be neglected and wavefunctions on
neighbouring sites may be assumed to be orthogonal.

t, ottt ot ot
VT W WOV W W)
N BN J |.. [ BN J [ BN J
0

|
al2-6 a

Write down the most general form for a Bloch state of momentum & made [2]
using these two orbitals, and show that the energy eigenvalues can be determined  [6]
by solving the determinant

‘ E(] — E(k) tl + tz(iika

tt sk By — E(k) |0

Hence determine the band dispersion

1/2
E(k) = Ey {t2 cosQ(%) + (6t)? sin(%)}

Sketch the resulting bands, assuming [dt/t| < 1, and mark the electron chemical [4]
potential or Fermi level. Without further calculation sketch also the wavefunctions [6]
corresponding to (a) the two states at k = 0, and (b) the two states at k = 7/a,
and explain why the relative phases from site to site take on the form you have
chosen.

With reference to the above calculation, and also by comparison with the
(linear) density response function of the one-dimensional free electron gas, explain  [10]
why you would expect that the ground state of the chain would indeed be expected
to be unequally spaced, i.e. & # 0.

We have ansatz ‘for Bloch state in LCAD method:

Yo (F) = = g eFR d-»)
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We Wart o show tht the $Fo state almjs has lower erergy

From a]oovt defivdﬁon we  know

E(R) = E. t 2/t + G orle
1 gt the jco]low‘mj derivation From  internet

The enerqy  goin due to 9P opening is  given laj

e

sE = M j [E® — Eqpn] dk

et [f [ )
= tft] [ et

A E - [Peowes )]

—_——————

For A<<) = —3%\’— [l+7\(°n-#1n>n)+ o(x)}
Also the energy loss jj:\'om lottice distortion:

A Eﬂ = N . 2\,]\(. 'éz ' SP)'R«J constait
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Density resyonse Function -
50 (3,w) = XGEw V(Ew)

We have chage density wave (cDW) in this case:
RCD = Lo + R oos(ex +y)
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2 Write short notes on two of the following : (Mathematical results may be
stated without proof, and marks will be given for demonstrating a rounded
understanding of the topic, and for appropriate use of examples)
(a) The calculation of the electronic band structure of solids. Your answer
should explain Bloch’s theorem and the origin of energy bands, and discuss
both approximate and accurate methods for their calculation.

(b) The uses and general properties of linear response functions. Your

answer should explain the definition, discuss collective modes and stability,

the requirements of causality, and the relationship to correlation functions,

and give two examples of response functions that can be measured in solids.  [15]

(@) Though Bloch’s theorem applies to various kinds of excitations in
solids, we will focus on that of electrons.

Without introducing the interaction of electrons and ions, we
cannot get insight of Bloch wave function. The electron wave
function with translation symmetry originates from the periodicity
of lattice potential.

[Ev vt - E1 = %G -%hoe"
l v
perndic, V(G+2) =VE perisdic [’

NFE Model: One significant result of periodic potential is energy
gap at the boundaries of Brillouin zone. The dispersion relation of
free electrons has parabolic form, while we apply perturbation
method (small V(r) for NFE), and degenerate perturbation method
at zone boundary, we get energy gap. The continuous E-k
regions and discontinuity regions consists of the total band
structure.

E E
Fefbtr}ﬂ‘lﬁ“n \ ]
of V(D / (1> NFE)

—




The band structure could also be understood from a point of view of
scattering of wave functions. The perturbed electron wave function
has right and left propagating waves and they have strong scattering
at BZ boundaries, which lead to gaps in energy bands.

Tight binding model: When V(r) is strong we apply tight binding
model, which give us insight from energy levels of atoms to energy
bands of solids.

E
4
Z

Beyond these rough models, in real calculation we got more reliable
methods. They will give fine adjustments of electron wave functions
and lattice potential.

OPW and pseudo potential: Add a Bloch function to the plane wave
solution. Atom wave function give suppression to lattice potential.

opw 0> = 1> = 2Bl F>

pSeudo potentia] —> V5 ICI>>

(f

UI$> + ZL(E-ED <Hl$> 1>

/A AN

wavtunction PSeuolo Fotent‘al

APW: Combine NFE and TBE.



Above are all methods with single electron approximation. When taking
into interaction of electrons, we get more improvements. The
interaction of electrons could be simplified as single electron motion in

an effective potential — —Hartree approximation.
_ $<HH> -
- o> o M eyl

Take into consideration of antisymmetric condition— —HF approximation.

DFT: Calculation of electronic structure based on electron density.

Get the ground state energy by calculating the variational minimum
of n(r).

Combine all the above together: ab initio method.

Accurate method? | think they are all approximation. Relative accurate.



(&)

To get information about the physical properties of a given system,
we could apply perturbation (fluctuation) to the equilibrium state
and learn about its response, so that to gain some insight about
the collective modes of excitations present in system from the
(linear) response function.

U (T w) = %(/3(7:)00 Fo (3.0

Jinear kespnce Sunction ap}ﬂifa( Force

The collective modes are waves propagating through the solid.
Modes of oscillations in system is described by the pole structures
of response function.

Stability: If there exists a curve w=w(q) where response function
is divergent, this is a sign of instability. At the critical point there
is a continuous phase transition.

Principle of causality: The response functions must be casual or
retarded, because it is impossible that we get response before the
force is applied. This impose conditions on the response functions
in Fourier space.

omv\l\\jﬁ ca| ojC N
RK-t) =0 if ¥>t. Kramers—}(raa\rj relations

n upper F]one
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Correlation function: A classical correlation function for the density
relates the density at one point in space and time to a nearby
point. The generalized susceptibility could be identified with the
correlation function of the observable O(t). The susceptibility is the
retarded Green function of the observable.

GG ) = RED D> — <g* >

Xxt%8) = -3 8(-t) <6| [0G». 6&+)] |e>
7

retard ed Pwraja_tor grend stite

Examples.
1. Dielectric function. Could be measured by conductive/capacitive
spectroscopy.

2. Conductivity. Measured by applying electrical current and measure
conductivity.



3 Consider the nearest neighbour Heisenberg Hamiltonian for an infinite
one-dimensional spin chain

Hyeo =—J Y, 5i-8;.

i,j=n.n

where the subscripts refer to lattice sites, and the bold font S is a vector operatior.
The spin variables satisfy the commutation relations for angular momenta

[S&, SJ] = 1?7”1,60575'

where the subscripts refer to the cartesian axes (z,y, z). Spins on different sites
may be assumed to commute.
Hence obtain the Heisenberg equation of motion for a spin at a single site n

N i A 2J A A
Sn = _%[Sm HH(iis] = %Sn A (Sn—l + Sn+1)
Now consider a ferromagnetic ground state, J > 0. Take the continuum limit
associated with fluctuations whose wavelength is much longer than the lattice

constant and show that the equation of motion now reduces to (setting 7z and the
lattice constant both to unity)

S=JSNOPS

Assuming small-angle precession about a globally aligned state (S,) oriented

in the z-direction, derive the dispersion relation for ferromagnetic spin-waves w(k).  [5]
Sketch the corresponding wave-like solution. 5
Next consider the case of an antiferromagnetic ground state, viz. J < 0, with

long-range antiferromagnetic order assumed at zero temperature. Repeat the

analysis and determine the dispersion relation for antiferromagnetic spin-waves

w(k) in the long-wavelength limit. (10]
Hint. Expand the spin variables in a Taylor series: Spi1 = Sy, + 0SS, + ...

For the antiferromagnetic case you may find it useful to work with a sublattice

magnetizaton M, = S, x (—=1)".

_n']e, nteraction encgj °:f nth SPh .

E, = - 275 (7).
Also  pa = -3pss..

En = —ﬂ"- [ﬂ%gj(S"—lﬂ_Snﬂ) A
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Com])on ent 'Eovm =

ds; :
= = %—%[53 (snﬁs;)—sf(sf.ﬁsfﬂ}] A 2 ess-s)

'\5 x x 2 d i x 3
‘ii — %—?‘ [sf (57 + ) = S(s2 +s5)] ~ fc = -2 (5752 -52)
J

i 2
% = —2%,_ [S:(Si] +Sn:"ﬂ> - SE (S"%' 0 5“:>:| iiﬂ =

\/\/@ Se,t Solu‘hw\ ’FOYMI <Sg>

e Ty

S2=wv ep [3 (Pka—wt)].
P]\Lj in Set
- 2%; <2_6-5kn._€:‘ak4>v _ 4150 eosk)

T—l‘le Solution exists When

Plot[l-Cos[ak], {k, -?, P—:}]

Y o %—(I_mkg

I
O

N L%("“S@.

T the dePers»\:n relation of 1D FM chain .
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Plot[Abs[Sln[ak]] {k _?, P:l}]
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Tl\e Solution exists When

0 43S
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4TS = 0.
e — W+
£ W = jg Smkq’

Is the d?s?ers?vn relation of 1D anﬁfcrromjmt{c Chain .
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