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1. Read Srednicki Sec. 1 — Unifying quantum mechanics and special relativity.

2. Srednicki Problem 1.2 — QFT for many-body quantum mechanics.

1.2) With the hamiltonian of eq.(1.32), show that the state defined in
eq.(1.33) obeys the abstract Schriodinger equation, eq. (1.1), if and

only if the wave function obeys eq. (1.30). Your demonstration should
apply both to the case of bosons, where the particle creation and anni-
hilation operators obey the commutation relations of eq. (1.31), and
to fermions, where the particle creation and annihilation operators
obey the anticommutation relations of eq. (1.38).
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3. Classical Klein-Gordon theory: We derived in class the Klein Gordon equation
for a scalar field

(87 — P2+ w2)g(t,z) =0. (1)

—wttikr and find a

(a) Look for plane wave solutions to this equation ¢(t,z) = ¢pe
condition on the frequency w = w(k) for this to be a solution [Hint: there are
two such solutions w (k)]. This describes propagating with a wavevector k and a
frequency w(k). Write the most general form of a solution to Eq. (1).

Let’s try to throw a Gaussian wavepacket of width ¢ to the right, with velocity

v. Specifically, we want to consider the initial conditions ¢(0,z) = ez /20,

and 0;¢(0,z) = —v0,¢(0,z) = %(3_12/(2“2. What is the time-dependent profile

o(t,x) of the wavepacket? Is it moving to the right?

(¢) Compute the ‘group velocity’ dw(k)/dk,and show that it is bounded by c.
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4. Quantum Klein-Gordon theory: We found in class that the 14+1 dimensional

Klein-Gordon action could be diagonalized by working in momentum space

1., 1. s Wi »
Z /(1t§|ok|‘)— 5"1‘2(:4|ok|2— 5(121:2 ol?. (2)

7 . . 4 . . . .
We have changed notation w, — mc*, because this will be the energy of a single particle
state with zero momentum (as you will show in point (a) below). The spectrum is

that of decoupled SHOs labeled by k

Knk}) =|--- s _2mg, M_2m, Mo, N2x, N2mg, Naxg, .. )

3
Hl{ni}) = {ne}) Egnyy = {ne}) D By )
k

with E,, = (nk - %) Vm2c* + (ck)2. Consider the ground state |GS) = |0,0,0,...).

Let us measure the energy of excited states relative to the ground state:
{SE{nk} — E{nk} — Egs = an m2ct + ((31{)2 $ (4)
k
Finally, define the total occupation number and momentum of a state as

N = an. P = an ks (5)
k k

(a) What is the energy of the single particle state with zero momentum, |...,0,0,n9 =

1,0,0,...)?

(b) What is the energy and momentum of the state
| ey 0,05 7085= 350,052,540, 05y =550,.0,005) (6)

i.e. the state where the SHO labeled by k; has occupation number 3, the SHO
labeled by ke has occupation number 5, and all other modes have occupation
number 07

What is the lowest energy state with momentum K? [Hint: consider states with
total occupation number Nppy = 1]. Plot its energy as a function of K.

What are the second and third lowest energy states with momentum K7 You can
assume K = QT”I with [ an even integer. What is their total occupation number
N {nk}? Add their energies as functions of K to your plot from point (b). [Hint:
you should find in the thermodynamic limit [, L — oo with K = ZT"I held fixed
that the spacing in energy from the second to the third state goes to zero, whereas

the spacing between first and second state is constant]
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5. Reading ahead: (if you have time!) Srednicki Sections 2 and 3.




QFT I Pset 2 Yo ® uchicaqo . edu

1. Srednicki Problem 2.8 (a) and 2.9 (a-d)

2.8) a) Let A =1 + dw in eq. (2.26), and show that

lp(a), MP] = L o(a)

where

L =R D)

U 9 V) = (A=)

A= |+ 8w
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= <I— #Swpv M’“D %) (I +,2—"h-5u),,/1/|"">
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2.9) Ilet us write
(2.32)

where
(S4")r = (g5, — gP0r) (2198)

are matrices which constitute the vector representation of the Lorentz
generators.
a) Let A = 1+ dw in eq. (2.27), and show that
N 7772 LV AP, (e QY T, (o) 9 9/
[0 p(x), MP] = L OPp(x) + (S§7) 707 ¢(2) . (2.34)
b) Show that the matrices S&” must have the same commutation
relations as the operators M#¥. Hint: see the previous problem.

¢) For a rotation by an angle § about the z axis, we have

1 0 0 0
0 cos —sinf O

no_
N 0 sin® cos@ 0

Show that

d) For a boost by rapidity n in the z direction, we have

coshn 0 0O sinhnp
0 1 0 0
- - - -
M=l 0o o1 o

sinhp 0 0O coshpy

Show that
A — exp(+inS2/n) .
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- rentz-invariant delta function: Prove that the inner product of single-particle

states

(k|k') = (0|axa], |0) = 2ey(27)%6%(k — k') (1)

is Lorentz-invariant. Use the fact that a Lorentz transformation A acts on single-particle
states as

k) — |k), with ki=A",k*, and k"= (g,k).

In other words, show that (k|k’) = (k|k’).
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otal momentum operator: In the SHO, the operator a’a counts the occupation
number. Build the operator Ny that measures the number of quanta with momentum
k. Build the operator N that measures the total number of quanta. Finally, build

the operator P that measures the total momentum of the state (Hint: measure each

quanta weighted by their momentum). Express this operator in terms of ay, .rz;r(,,

and then ¢y, mc. Finally, show that it terms of ¢(z), w(z), it takes the form P, =
—[d 32 d(a r)0i#(z). Compute the commutator of this operator with ¢(z). Finally,
compute e Po( )e~®¥'P (Hint: you can simplify this last point by aligning your axes

with the y vector, so that y = (y',0,0)).
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4. More on Lorentz and Poincaré algebras (optional): (i) Starting from Eq. (2.17)
in Srednicki, check that the generators J= = J; + iK; form two su(2) subalgebras:
[Ji", ;'] = ieijiJiy and [J7, J;] = i€ijiJ) . You know from QM that representataions
of su(2) are labeled by a spin s = 0, %l :f fields in 3+1d relativistic QFT
(such as the standard model!) are therefore labeled by irreducible representations

of su(2) & su(2), i.e. with two spins (s1,s2). The scalar representation (0,0) is the

simplest (the standard model Higgs boson transforms in this representation).

(ii) In class we obtained the Lorentz algebra (Eq. (2.17) in Srednicki). Spacetime

translations x# — z# + a* are also a symmetry of nature. Their generators are

15“ = (H 15) where H is the Hamiltonian. Starting from Eq. (2.15) in Srednicki,

obtain the commutator of 1-:’,, with Lorentz generators Eq. (2.19). This, together with

the Lorentz algebra (2.16), forms the Poincaré algebra.




lassical field theory and effective field theory: (i) construct the most general

Lorentz-invariant action for a scalar field ¢ that is quadratic in ¢, and contains at
most 4 derivatives. Use integration by parts (you may assume that ¢(z) vanishes at
infinity + — oo) to reduce the number of terms in the action. What are the mass

dimensions (units) of the coefficients in the action? (ii) obtain the equation of motion.

(iii) generalize to include cubic terms O(¢?), with up to four derivatives.
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1. Transformation properties of Wightman function: (i) Show that the Wightman
function Gy (z) = (0|d(t, x)(0,0)|0) of a Lorentz-invariant theory is unchanged if
evaluated at the Lorentz transformed coordinate A~ 'z, i.e.: Gw(z) = Gu'(A_l;'I:).

Show then that its Fourier transform satisfies a similar relation Gy (p) = Gw (A~ 1p).

(ii) Show that the result Gy (p) = f—_’:é(w — ¢) found in class can be made manifestly

invariant under Lorentz transformations (strictly, it will only be invariant under
proper orthochronous Lorentz transformations, and not invariant under time-reversal).
[Hint: you might use the fact that for a function f with zeros f(z;) = 0, then

5(£(2)) = i sy ¥l — o).
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In QFT, fields are operators. So a field remains unchanged if it is unitarily equivalent to itself. In other words, φ(Λ^{-1} x) = U(Λ)^{-1} Φ(x) U(Λ). 
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2. Retarded Green’s function: The retarded Green’s function is defined as G (t,z) =
i0()(0|[(t, x), #(0,0)]|0), and plays an important role in linear response (the factor
of 7 is a convention). Compute its Fourier transform, following similar steps to the
derivation of the Feynman correlator in class. Pay special close attention to the required
i0" one needs to introduce for convergence of the integral. Plot the poles of this
correlation function in the complex w plane. You should find that, except for the i0™’s,

the retarded Greens function is proportional to the Feynman one. Finally, show that

for w > 0, Im GR(w, k) = %Gw(w. k) [Hint: you may want to use Im ﬁ = Fmd(z)|.
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There should be two terms in the commutator. 


3. Higher point functions: (i) Show that the three-point function (0|¢(z1)é(z2)d(z3)|0)

vanishes for the free scalar.

Next you will show that the four-point function ‘factorizes’ into products of two-point

functions:

(01¢(z1)d(x2)3(23)(24)0) = G(212)G (z34) + G (13)G (x24) + G(214) G (223) , (1)

where z;; = z; — z; and G(z) = (0| ()(0)|0) is the regular (Wightman) two-point
function. You will do this in several steps: (ii) Define ¢_, ¢, as the parts of the

operator ¢(z) that have the lowering (ay) and raising (aT_k) operator, respectively:

teik-x (efisktak . eisktaT_k)

It will be useful to work with these operators in this exercise. Show that their

commutator is just a number (not an operator), equal to the two-point function:

[6—(21), P+ (22)] = G(z12) -

(iii) Define the normal ordering of an operator O, denoted by : O as the same operator,

but with all a’s on the right and a!’s on the left, e.g.

2(11((12 -+ (1;)(1,3(1];: = aéalala;; + (11(11(12(13 2

This is a useful definition because (0]:O:]0) = 0 for any O. Show that

A A

$@1)d(@) = :3(@1)(x2): + Claz).

(iv) Show that [Hint: make use of éi]

o(x1) :p(x2)d(x3): = 3@(11)0(@)(3(13)? gl G(Im)é)(l“:;) + G(z13)P(x2) -

and therefore

d(z1)P(x2)d(x3) = :0(21)d(w2)d(23): + G(212)d(23) + G(213)B(22) + G(223)B(1) -

A~ A~ ~

(v) Derive a similar expression for ¢(z)@(z2)@(x3)¢(x4), and show that it implies (1).
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4. Dimensional analysis and correlation functions: (i) Consider the free massless
relativistic scalar:

S=- / iy %(0,,@)2 .

Given that we have set the mass m = 0, there is no scale in this theory. In quantum
and relativistic units (where ¢ = h = 1), time and spatial derivatives have dimensions
of energy 0; ~ 0, ~ E. Show that for the action to be dimensionless, the dimensions
of ¢ is ¢ ~ E@-1/2, Using Lorentz invariance and dimensional analysis, can you guess
what the Wightman function Gy (z) = (0|¢(t, x)¢|0) is equal to in this theory (up to
a factor)? How does your result fall off for ¢ = 0, x — co? (ii) Let us contrast this to
a theory with a finite mass gap m # 0. We found in class that the Wightman function

was equal to
ddk eik~r—iskt

e / (2m)d  2¢

with ex = vVk? + m?. Because this integral is difficult to compute, we will focus on

d = 1 spatial dimension, and set t = 0. Using the tool of your choice (Mathematica,

tables of integrals, the internet, or integration skills), show that

L
Gw(0,z) = gl\()(v’rﬂ;r\). (2)

where K, is a modified Bessel function. How does this behave at long distances
m|x| > 1?7 You should find that it decays much faster than in the m = 0 case: gapped

systems are short-range correlated.

O{Ll dd dH
(3> gp(}) = E * _ S i Xd x E ) d}merﬁon,SS,

sk - ot
2
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3 kX In[2]:= J‘m— dk
(o ,)9 _ dk e -©2 A[k? +m?
GW / - 27T 2 k‘lfmi

m? BesselK Absi(} } if x €R&&Re[m?] > 0

i
3

= 5Lk, /\mlxD'

Abs [x]

Plot [{BesselK [9,

]}, x, -10, 19}]

Oout[7]=
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1. Gaussian integrals: (i) Consider the integral

> Maz?
I, :/ dee ., n €N. (1)

—00
Argue using symmetry that I, = 0 if n is odd. Next, show for n = 2m even,
Iy, = (—1)™031p. Finally, compute (or look up) Iy, and obtain an expression for
I3,,. Show that (I4/Iy) = 3(I2/Iy)?, and speculate about a possible connection with

problem 3 in Problem Set 3.

(ii) Next we consider Gaussian integrals with multiple variables z; € R
I(A[ ()‘) = /dl“l e (1-’17}\" 6—51\[1]1711‘]4‘(1111 . (2)

where 7,5 = 1,2 N, and repeated indices are summed. The exponent can also

be written —%:pT]\I x + alz in matrix notation. The integral is over R¥N. First show,
: : 3 14T p-1

using a suitable change of variable, that I(M,a) = e2® ™ *I(M,0). Then, compute

I(M,0) by using the orthogonal matrix O that diagonalizes M.

(iii) As a toy version of path integrals in QM/QFT, we will consider the regular integral
I(M,0) with ‘action’ %.ITTAI x. We define the expectation value of the ‘operator’ z;, or

more generally of a function of all the {Z;}, as

<ﬂm&»ffﬁ%®/ﬁm~«hwﬂhﬂk%“ﬁ%- (3)

(for example, we will consider f({%;}) = #;Z;, and f({Z;}) = Z:%;ZxZ;, below). After

checking that (1) = 1, show that (#i2;) = (M), ; [Hint: you may want to first

show that (Z;%;) = m (aaianI(M. (r)) la=0, where « is set to zero after taking

the derivatives]. Generalize to show that (f({Z;})) = m (f({Ou; DI(M, @)) |a=0-

@ T, = g: x e

Ty e - .00, o

Fr ol n, T =
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Finally, show that
<.f‘lj‘1”i‘k.f‘1> = (i‘iiTj><i7k:IJ1 U3 i)\ LjTk) - (-1)

This correlator is, in a sense, ‘disconnected’ — it factors into two-point functions, as

illustrated below:

€Iy

Ty T Ty T T4

In fact, one usually defines the connected 4-point function (#;2 ;&%) as the left-hand
side of (4) minus the right-hand side of (4). Clearly, the connected 4-point vanishes
for the Gaussian theory, as you have just shown, but for more complicated theories it

will be non-vanishing. For a more general theory
I((I) = /d:l:l P d.’I,'.‘\Y 6—5({1})%-(111: : (5)

the logarithm of the path integral can be used to generate connected correlators. Show

that for the 4-point function (still using a definition analogous to (3)), i.e.:
(8ij2k81)c = (0:00; Oy Doy 108 1(0) ) |0 - (6)

(iv) In QM and QFT, we will typically have to deal with Gaussian integrals with

imaginary coefficients. Using complex analysis, show that

- iMa? _ iz gnM
/ dx x" M — eT(n+l)sgn: ; (7)
—00

where I, is the integral from Eq. (1). “Wick’s theorem”, which you proved in point (iii),

therefore also works for these complex integrals. [Hint: show by contour integration

: ; y iMz2 - ;
that the integral along the real line [©, dx 2" e'Mz" ig equal to the integral along the

iMz2

3 Aein/4 S
line rotated by 45 degrees [~ iem nndrze , plus a contribution from an arc that

vanishes as A — oo
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Non-Gaussian integrals: In the path integral formalism, interactions in QFT will
enter as non-Gaussian terms in the integrals (e.g., Sint = [ A% 4+ Not). As a toy

version of an interacting QFT, we will consider the integral

“inMix r'—MI T;T
dzy---dzy e 2V iTi%IT 3 TiTiTk (8)

We will assume the ‘interaction’ A is small, and work perturbatively in A. In practice,
this means expanding the exponential-—in this problem we will only expand to linear
order in \. (i) Considering ‘expectation values’ as in problem 1, let us start with the

1-point function in the interacting theory:
(ja>k = <i'a>[) + O( ) 3 (9)

where (-), denotes expectation values in the interacting theory, and (-)o in the theory
with A = 0. Show that (Z,)0 = 0 by symmetry, and then find the O(\) term (you can
express your answer in terms of ‘free’ 2-point functions, (Z;;)o). Your answer might

be illustrated by the diagram:

(ii) Next, compute the 3-point function in the interacting theory
(TaZpZe) , (10)

to leading order in A. Try to draw diagrams representing each term you find. Finally,

compute the connected correlator

(BT Y oon — 058y — A B B2 — {22

to leading order in A\. Show that only the fully connected diagram survives.
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3. Srednicki Problem 7.3

7.3) a) Use the Heisenberg equation of motion, A = = i[H, A], to find explicit
expressions for @ and P. Solve these to get the Heisenberg-picture
operators Q(t) and P(t) in terms of the Schridinger picture operators

@ and P.

b) Write the Schrédinger picture operators @ and P in terms of the
creation and annihilation operators a and af, where H = hw(afa+ %)
Then, using your result from part (a), write the Heisenberg-picture
operators Q(t) and P(t) in terms of a and al.

c¢) Using your result from part (b), and a|0) (0la® = 0, verify
egs. (7.16) and (7.17).

ORI R [0.] =i
(re) + 222 o]

It

1}
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- qu& _
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_wﬂ,P. P(t) _ AC;Wt-}- Be_.‘wt

]

> P )

QW = - (1A e supe™)

- Wt iwt
- mque’ + mwBe

A . B de‘)@{ldu“t on ]f!?ﬁll Ovndiﬁon,

PO) = A+B. Q9= Z5 A+ B
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(b) H:Kw(a‘LaJr:';)‘ H_—P:+_&
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=1 e 2a+> €%+ & G@~-2a> e

= W(a 6 _ae-;wt>A

T

= )1 olo),_,

1) + (term with f? )] (0|0)f’f 5

(7.16)

’%[G(fl—fg)G(Q —ty4)
+ G(t1—t3)G(ta—ts)
+ G(nl—r.i)a(z,g—zﬁ)] . (117)
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4. Topological aspects from the P.I.: Dirac charge quantization (optional)
Consider the action for a non-relativistic particle of mass m and charge ¢ in a EM
potential A, (t,x)

Si= / (lf%m.i‘,(l)z —q [A(,(I. x(t)) + A,-(I,.:-(f))_i-i(l)

&

(i) Compute the classical equation of motion 65/dz(t) = 0 and show that it leads to
the Lorentz force (in particular, show that it is gauge invariant A, — A, + d,A(t,x)).
(ii) Let us now fix A;(x) to correspond to the field generated by a magnetic monopole
at the origin. That is, we choose Ay = 0 and A(x) such that
B:VxA(x):qu. (13)
(the form of A(x) will not be important). Compute the magnetic flux through
a sphere of radius R. (iii) Consider a non-intersecting trajectory for the particle
constrained to a sphere of radius R, with periodic boundary conditions in time
it oo .I?i(t) = lim¢_y00 ;'ri(t). This defines a curve C € S?. The contribution of this

trajectory to the action is

5=—q/dtx-A=—qfdx-A. (14)
C

Using Stokes’ theorem, show that this can be expressed as the integral of the magnetic
flux through a section of the sphere D, with boundary 9D, = C. Note that there are
two possible such sections Dy, Do, such that Dy U Dy = S?, and that the value of the
action depends on which one you choose! By requiring that both contributions to the

path integral e*® agree, derive a quantization condition on the charge g.
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1. Noether currents in classical mechanics: Consider the action of a system of
particles ¢, (t) of masses m,:
/(Itz Ma(Ga)? ZI |7a — @b]) - (1)
a#b
From a field theory perspective, this can be thought of as a field theory in 041
dimensions, because the degrees of freedom ¢, only depend on time ¢. The Noether
procedure also works in this context. Find the Noether ‘currents’ associated with the

following infinitesimal transformations (parametrized by ¢, a,0 < 1):
o Time translation: ¢, — @,/ (t) = Gu(t) + cOqa(t):
o Coordinate translations: g, — ¢,’'(t) = q,(t) + a:

¢ Coordinate rotations. For this we can specialize for simplicity to vectors ¢, in

R2, so that coordinate rotations of infinitesimal angle 8 act as (¢.)i = (¢a’)i =

(ga)i + O¢€ij(qa);j, where €;; is the matrix € = (7(1j (1))

(Notice that the second and third are internal symmetries in this context, because

they do not act on time, but just on the ‘fields’ ¢y)

Do the currents look familiar?

- Juelamdi - 2 viben)
16w
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. Complex scalar: consider the action for a complex scalar field ®(z) € C:
- /dd’lf(')#@()“(b* — m2|®|2.

(i) Write ® = ¢; + i¢2 with ¢ 2 € R and obtain the equations of motion 6S5/d¢; 2 = 0.
Show that one can equivalently obtain this equation from §S/6® = 0 by treating ®, ®*
as independent.
(ii) By coupling the field to sources S — S + [ d?*'z J*® + J®*, compute from the
path integral the Feynman correlators in momentum space, i.e. the Fourier transforms

of (0|T{®(z)®(y)}|0), (0|T{®(xz)P*(y)}|0), and (0|T{D*(z)D*(y)}|0).

[Hint: if you work in momentum space, be careful that ®; is independent from ®_,
for complex fields!]

(iii) Show that the action is invariant under the transformation ® — €'*®. This is
called a U(1) symmetry (because € is a unitary 1 by 1 matrix: (e!)f = (e'®)~1).
How does the symmetry act on the (¢1,¢2) fields? Show that the Noether current
associated with this symmetry is:

" =i D — i DD (3)

Define the charge operator as Q = [ d% j°. Check, using the Hamiltonian formal-
ism, that [Q, ®(z)] = —®(z) [Hint: you may want to express () in terms of ¢1, ¢
and their conjugate momenta 7, m2, and then use canonical commutation relations.

Alternatively, you can find the momenta conjugate to ® and ®*|.

() = 239" -~|3 B=d+ith.

L= (b +20) Q" -i0") = o/« i)

= %3 2% —%hoh — [+

egn ?M 9‘)\' _ ‘ ‘ <€1u/wlﬂ~i— o SS/S‘%;: O>_
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(iv) Generalizing, show that [(;).((ﬁ)q] = —q(®)?, where ¢ € N. The Hermitian

operator Q allows us to construct a unitary operator U(a) = €9 realizing the

symmetry transformations on the Hilbert space of states (similar to what we had done

with Lorentz transformations). Show that these act on the quantum field operator as
(4)

Using this and the fact that the vacuum is invariant under the symmetry (.:"(a)l()> = |0},
show that two of the correlators from point (ii) had to vanish by symmetry.

(v) Compute the connected correlation function (j*(z)®*(y)®(z)) using Wick con-
tractions. Because we are focusing on the connected correlator, you can drop the
UV divergent contraction that would come from contracting both fields in j#. Check
that your answer satisfies the Ward identity. (You can choose to work in position or
momentum space).

(vi) Add a term (®)? to the action g € Z, and show using the new equation of motion
that the current j# that you found previously is no longer classically conserved. Then,
show that the action is still invariant under a Z, symmetry, that acts as ® — ei2™/4p,

with n € {0,1

A\Je\OJiCS, T was Yunn;(\j ot of Hime 1o Submt
any - more job - fee| fre W ke of

Y\hore F“-'/’tf



3. Srednicki problem 22.3

22.3) a) With T# given by eq.(22.31), compute the equal-time (20 = y°)

commutators [TOO( ), T®)], [T%=z), T®(y)], and [T%z), T%(y)).
b) Use your results to verify egs. (2.17), (2.19), and (2.20).

T)"‘v _ ,au% ?\)(fa + 3/uv)\ .

\/o.y;fyj [j 7)] = -.Jni.ij [T.H] = o
[j\/ kJ:I = fh Ei}'k kk, [jil P)] = ;ki;jk Pk_
[ki, H] = 3kP:

_k.-) K| = -h&e Ji _
'_ ] Jk—.)—k I_K”Pj]:;‘hsJH

[P.p)=0

[P H] =0
Oxpres avev\«jtl'ﬁnj i tensor Jorm and o olgebra
P = e T

T o o [
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. Noether’s charge as generator of transformations Consider an infintesimal

internal transformation parametrized by o' < 1, acting on fields ¢, as

ba = G = da + ' (Ad)ia . (1)

The index i labels the transformation (there could be several), and a labels the fields.
Consider the Noether charge Q; associated with this transformation. We have shown
in class using the Ward identity and the path integral formalism that the operator

satisfies the equal time commutator

Show this using instead the Hamiltonian formalism, using the definition of the Noether

current and momentum conjugate to ¢,

Noether cwrest ), A‘Fm/ with  Mocthe, C)IWjﬁ Qi

" )
valed  over Srauz, O = Yd’yjio
Mo mentium Oonjqjad:e [(#)u(a?)J 79,(9)] = ibu 53(7_5—17)_
\ 20 :
Since 7(:: = 9(341’) ) @.‘ :‘[ ?@,u A#) = fdgx T, A#’-‘a_

Lt abe=(Thd
(&, 4]

5 55.4)
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2. SU(2) symmetry: (i) SU(2) is the group of 2x2 special (det U = 1) unitary (U =
U~1) complex matrices. Writing U = €', what conditions must M satisfy? Show that
the most general such matrix can be written M = Z?: 1 @io;, where o; are the Pauli
matrices and a; € R. The matrices .11-2 = %oi form the two-dimensional representation
of the SU(2) algebra: [J2, ]]2] = i€;jrJ2. Find the 3x3 matrices J? satisfying the same
commutation relations [Hint: these are the generators of rotations in R3].

(ii) Consider the following two theories:
Ly=- ) 8,8;0'd, + M°®;d,, (3)
a=1,2

Lgj=~ Z Buxi®xi + m?(xi)?, 4)

i=1,2,3
where @, @5 are two complex fields, and y1, x2, x3 are three real fields. Show that
Ly has an SU(2) symmetry that acts on the field as &, — [(imi']? |ab®sp, and find its
associated Noether currents j,ix- Show that £5 has an SU(2) symmetry that acts on

ok : : ¥
the field as x; — [’ v Jijx;j, and find its associated Noether currents x 1

(iii) Find a interaction term for S (i.e. a term that is not quadratic in ®) that preserves
the SU(2) symmetry. Do the same for Ss. Finally, show that the following interaction,

which couples both theories, also preserves SU(2):
Lint = Axi @505y, (5)

where repeated indices are summed, A € R is a real parameter, and o' are again the

Pauli matrices. What is the Noether current of the theory £ + Lo + Lint?
M e MM M M
e e SsU®.  Fr Humte M, "€ = "™ =)
Then sotithes UU'=]. ond det @) =™ <] > T=o0

With MY =/, Tem) =0, we have

3
M = §.er~
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3. More on ¢* perturbation theory: When studying the 1-loop correction to the

two-point function in the theory £ = —%(Oﬂd))2 - %m%}z — %/\cf)3 in class, we found

that there are only two diagrams contributing at order A? to the connected two-point

function:

(A)

We studied diagram (A) in class. The goal of this exercise is to compute diagram (B).

(i) Remind yourself of how we derived in class the form of the O(\?) correction to the
connected two-point function:

2'2

(6(2)9(0))c = (#(x)h(0))o + 5 (¢(2) Sint Sint #(0))0 conn, + O(A?) (6)

where ‘conn.’ means that one only performs Wick contractions resulting in fully
connected diagrams. Show that all such contractions lead to the diagrams above (with
sometimes x7 and x5 swapped). Summing up the ones that produce the (B) diagram,
you should find

;2 & .

+ (&(2)Sint Sint ?(0))0l conn. = 5/\2 /J_l 5 G(z — 22)G(22)G(z2 — 21)G(0), (7)
where we used the shorthand [, = [dPz, and G(z) = (¢(z)¢(0))y is the free two-point
function (also called ‘propagator’). Notice that the (1/3!)? canceled with symmetry

factors.
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D ,
(ii) Next, Fourier transform to show that [ (d—,r% [Eq. (7)] e7™"Pu is equal to

§ g e dPp’ ~
SYIEWECO) [ G550W) ®)

where G p) = f 75 G(z) = Prmiie: Confirm that the form of this expression
satisfies our ‘momentum space Feynman rules’.

(iii) Finally, we need to perform the integral over p’. Let us focus on D = 4 spacetime
dimensions for concreteness (although you can keep D general if you wish). Wick

rotate p{, = ipyp so that the integral becomes

d’ ~, , d*p) 1
/WG(p) /(271')E ’g—}—mz' (9)

with now regular ‘Euclidean’ norm: p%, = p%, ,+p% | +P% »+p% 5. Working in spherical

coordinates (and using the fact that the area of a 3-sphere of radius 1 is 27%) reduce

this to a single integral of the radial momentum:

d4pl il 1 it p:}&j
/ (271')4G(p) B 8?[) dpEPQE +m?2’ (10

This integral diverges for large momentum pp—it is ‘UV divergent’ To make sense of it,
let us replace it with an integral that has a sharp momentum cutoff [ dpr — [; dpe.
Assuming A > m, compute the leading order integral at large A (your answer should

be O(A?%)). In summary, we have

G(p) = + 56:(,;)|(A) ' (5@(1})|(B) +0(\Y), (11)

p? +m?
where the contribution dG(p)|(a) from diagram (A) was found in class; spell out your
answer for 6G(p)|p) and then show that the UV divergence can be absorbed by a

‘mass counterterm’ m? — m? + ém?, providing an expression for ém?.
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. Wavefunction renormalization: When computing diagram (A) in class, we found

that in D > 4 spacetime dimensions there is a UV divergence coming from the integral

dPq 1 ;
| epwar 3

which can be absorbed by a mass counterterm like above (this is called ‘mass renor-

malization’). In this exercise, show that in D > 6 there is another (subleading) UV

divergence, which however can be absorbed by adding the counterterm —262Z (0,,,@‘)2

to L. For historical reasons this is called ‘wavefunction renormalization’. [Hint:
you don’t need to compute the loop integral; to get the leading and subleading UV
divergences you can expand the integrand for large ¢ (the integral is actually evaluated

in Eq. (14.27) of Srednicki in case you would like a consistency check for your answer)]

x % P
'__Q—‘O 4% L e.xym} fr g =

@oP (T

4"z D
= g@ov % | Ly= 02y

200 >t1 A
o R geb-sdz DD[‘L j
@°

@ F;r DZL", 9AV] d:\/tﬁenc,e,

® Fr D=b_ [;_D:]A ~ N Subdivergence.

/ ( N\ st as urPu—b«mol of intjru[>

Should do in this way
& d"q l
(2TE)D (T+8)

JD?/ =0 ‘ZMO{Z _



w=y " 02
- o du U@
b 2 U+
0
n - N
~ 1T u J(ﬁ%) = W+a
9
A D-4 2
N
-2 0 Uta N+a
N N
D-2 ot _
~ TKO u du N

D-2 AP NP
2(D-§) N+a

)Jj a.au;nj - —,’7 S2 @,1’)1 ‘o )

L = 16 - 56

2

A

then we have d?verjenoa cancelled .
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You are correct in that when D=6, additional divergences are present. But it is crucial to show that the subleading divergence ~Λ^{D-6} is proportional to p^2 so that a counterterm in (∂φ)^2~p^2φ^2 can absorb this type of divergence.
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1. Unstable particle: Consider a theory of two interacting real fields y, ¢ € R:

S=— /(ID.I' é((‘)\)2 + émg\2 + é(()qﬁ;)2 + =

We will assume that ¢ is the heavier particle, i.e. M > m.
(i) What are the symmetries of this action? Show that a term x* can be ruled out
if one imposes one of these symmetries. Can one similarly rule out ¢*? Provide the

energy dimensions of the fields, their masses, and their coupling .

(ii) We will focus on the connected two-point function of the heavy field
Gy(p) = / AP =P (0| T ¢ (z)$(0)|0). -

What is it when A = 0?7 Show that there is no O()) correction, and then show that
at O(A\?) there is a single 1-loop diagram, similar to diagram (A) in Problem Set 6.

Express your result as a self-energy Il,(p) as in class, and show that it takes the form

‘IDI’, o Vel / 1)
y(p) = / WGU)(P )Gy o(p—p')+0O(N\),

and give an expression for G, o.
(iii) Following the steps in class (Feynman parameters and Wick rotation), reduce the
integrals in (3) to an integral over a Feynman parameter, and over a radial (Euclidean)

Fappis: " )
momentum pip.

() X=X Ba synety

X+ -X
X3 ‘te,yM g gdbx—g“x; —_ . —){3 ) b»ea’( X, ano( mlen‘ ouk .

Cl)z ‘tem; J\dpx%lb; M ) AotS nvt b&qk Zz_ Canhot' Y(AC ou‘l"

{

Dinenson - (200, DI~%L @iF [P~

[m],[M]’\’ | . 7\‘#’7(1“'[7‘ 2¥~D‘ =) [)\],\,3-1)'
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(iv) Let us take D = 2 to make the integrals simpler and focus on the physics. The

radial integral should be straightforward to compute, and you should be left with

dx
l+ l(l—l)—lf.

(4)
Show that the integrand has a singularity ([ox z € [0,1]) iff p? = ,,,g + pf < —4m?.
In this regime, one has to be careful with the ie prescription which resolves the
singularities. This is a physical effect: we are injecting enough energy po in the ¢ field
to create two y excitations (pg > 2m). We will precisely be interested in this regime,
where II, acquires an imaginary part. Show that
—p? —4m?) (5)
oy T ——— b}
- S+ o
P2

where O is the Heaviside step function: ©(a) =1 if @ > 0 and 0 otherwise. [Hint: you

Im H,Q(p'“) =

can use Im u — = mo(y)].

jcacug on l-i——rz;’x(l—x)—}iv:O.
Qﬂ(

= r;l = x(x-1) € I};L o]_

We have P'<-4m +o hak s:\«juluni‘f

'}.

| dx
For P >2e. THD = 8T[M[ .

o [+ Laia-c

on shell  P=rmt, @p)=m s E‘Lg = TSy

= 1 L\z L. x
L Th) = 7| &5 5640 56 7 = Pk g
M—:\:(g—%g]r‘;% I kew this is net t;jlt"‘
¥ B - bt cmast 36‘t it le;t
e

r;



(v) This imaginary part of the self-energy is particularly interesting, because it cannot

. . . . - 2 . .
have the interpretation of a renormalization of the ¢ mass M*, which is real. Let us

I . . . 2 2 .
study the ¢ two-point function close to its pole p* ~ —M=. Near this pole we can

approximate the 1-loop corrected two-point function as

‘ —1
(7") = A T —MD
o(p) P2+ M2 — T4 (—M?)

(6)

Ignoring the real part of II;(—M?),! show that the poles are no longer located at

po==% <\/4"\[2 +p? — ie) but rather at

po==+ (A[2 +p? — iF) ;

2

to leading order in A\, with I' =
V1=

(vi) T is called the decay rate (or inverse lifetime) of the unstable heavy particle ¢.

—a— ——___. The ie¢ has come to life!
8M2,/M2+p?

Fourier transforming time only | %cﬁ"‘"t. compute G4(t,pi = 0) and argue why that

is a reasonable name.

(We will learn to compute particle decay rates after studying scattering. You can

consult Srednicki Sec. 25 for some inspiration on this problem).

fl_;- m - Th(-MD) =0,

L dp - S
Th® - 37| L

@D° p-m-ie Q-p)-m-it

N *
.IT?(_M) = 3)\ @.TE)D P‘-—Mi—ii (_Mz_zr_r;+ -.)_mx_fis
A B

|
|
d )
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»! theory: compute the leading in \ correction to the connected two-point function
of ¢ in the theory

S=— /(10;,- é(i),&‘)Q g S (8)

D)
In particular, show that in this theory, the leading correction is O()A). Show that at this
order in this theory the two-point function does not see the multiparticle continuum,

i.e. its only non-analyticity is a simple pole in p? (unlike what we had found for the ¢*

theory). Show however that the mass still gets renormalized, and give the expression

. i i ~
for the counterterm dm* in terms of your sharp momentum cutoff A. Can you guess

. . . . . . e . 2
at what order in A one will get qualitatively different non-analyticities in p*, and what

. . « . 2
they will look like? Draw the diagram, and guess the value of p* where you expect a

branch point.

Twe Fo]/l‘t ‘EMC‘EM:

Lo TR |0> = fﬂe"”“") |

’“v: @o° P+ =TI
> —3
P P CorreCtion  term:

T = 4 f L '
2 ) @)° (@+m)(@Q-p+m)
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S M’)- - _IT(_M\) = . .. Cc\lculofte O\t D

1
-


Davi Costa
23490000000137848
incomplete


QFT T Pset § ywx'\“'j C) uch[caja,edu

. Renormalization of ¢* in D = 6 : We showed that coefficient of the ¢* interaction

has dimension [Ay3] = 6=D. this interaction is therefore marginal in D = 6. Following

steps similar to what we did in class for the ¢ interaction [see Peskin Sec. 12.1], show
that the ¢* grows upon coarse-graining. The crucial diagram will look like Fig. 16.1 in
Srednicki, but with double lines (representing the high energy mode ¢) running in the
loop. You can assume that the loop momentum ~ A is much larger than the external
momenta k1, k2 and the mass m, as we did for ¢*.

[Note: to fully conclude whether Ays is marginally relevant or irrelevant, one would
have to also find the wavefunction renormalization §Z. This was not necessary for ¢?,
because there §Z = 0 at leading order. However, for ¢ theory you showed in PS6,

Problem 4, that there is a finite Z at leading order in coupling,.]
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2. Wilson-Fisher fixed point in D =4 — ¢ : Let us return to ¢* theory. In D = 4,
integrating out a shell of modes with momenta bA < p < A leads to a change in the
coupling A\ = —%g log % How the coupling changes with scale is called the beta
function for the coupling "

d
B = Togh: (1)

Now when D # 4, there is an additional change in the coupling due to its non-zero

dimension (see Peskin, Eq. (12.26)). Combining these two effects, one finds that near

D = 4 the coupling changes as

212

16771957 ®

Defining ¢ = 4 — D > 0 and assuming! ¢ < 1, show that there is a zero of the

/\I . )\bDf»l _

beta function at a particulara value of the coupling that you must find. Argue that

your result is trustworthy even though you obtained it from perturbation theory
(i.e. assuming A small). At this fixed point, the physics does not change as one zooms

out — it is scale invariant! Explain Fig. 12.2 of Peskin.

If you have time, you can read more about the Wilson-Fisher fixed point in Sec. 12.5

4.9

of Peskin. This fixed point, whose existence you've proved for € < 1, is believed to

become the 3D Ising fixed point (CFT) in D = 3 when € — 1.
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3. ‘In’ and ‘out’ states: Read the argument at the end of Sec. 5 in Srednicki, showing

that az(—wx) does not create multiparticle states.
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1. Discovering the ‘Higgs boson’ :

Consider a simplistic model of our universe, where we only know the existence of
one light scalar particle y with mass m = 1 GeV. However, we have come to suspect
that our universe may also contain a much heavier scalar particle, an elusive particle
called . Thanks to novel high-energy x colliders reaching near TeV scale, we hope to

carefully study xx — xx collisions to find evidence for the existence of (.

(i) To make sure we understand the ‘background’ signal, let us first study the y-only
theory. Assume we know from every day life that it has x — —x symmetry; show
that the most general Lorentz-invariant Lagrangian for x involving only relevant or
marginal terms, in D = 4 spacetime dimensions, is

1

| P 1 5 .
L, = —5(()\)2 — 57712\2 —

[Note: we will keep the y! term even though we have shown in class that it is

marginally irrelevant.
(ii) Next we turn to xx — xx scattering in the x-only theory (1). We are interested
in the matrix element M appearing in the non-trivial part of the S-matrix:

(fl3) = &if + (27)*8% (k1 + k2 — Ky — Kb)iM (K1, k2 — ki, kb) . (2)

We found in class that it can be obtained from the time-ordered connected 4-point
function using LSZ:
iM(ky, ka = ki, kb)) = (k2 + m?) (k2 + m?) (K2 + m?) (K + m?)

x (01T ¢(kr)d(ka)$(—K})d(x = 0)[0)..,

3)
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Technically, we should also consider derivatively-coupled terms such as (∂^2 χ)^2. 


() Let's revisit -the process .
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with the tree-level result
M(ky, ko —>k'1.k§_) = —)\+O(/\2). (4)

Following similar steps as those used in class, obtain the O(\?) correction. Your result

should be Eq. (10.21) in Peskin, namely:
iM(k1, ks — k1, kb) = —id + (—iN)2 [iV(s) + iV (t) + iV (u)] — iy + O(N®), (5)

where s.t, u are the Mandelstam variables, and with

—p

p2 +m?2’ (6)

. 4
V()= 5 [ GHCWGE+r). )

What is d, and why is it necessary? Next let us evaluate V(—k2). Peskin does this in
Eq. (10.23) using dimensional regularization: do it instead using a sharp cutoff A on
Euclidean momentum as we have done in the past. As a renormalization prescription,
we will choose d) to simply cancel the log A divergence. Evaluate all integrals except
for the one over the Feynman parameter fol dz. Your answer will be slightly different

from Peskin’s Eq. (10.25) because of the different renormalization scheme.

(iii) We will be interested in high energy scattering, s, ¢, u > m?. Show that in this

limit,
2

iM(ky ke = K, k) = —id = izo—

log(stu) . (7)

(We are only keeping the A? terms that are enhanced by logs of momenta). In this
limit, the differential cross-section is approximately angle independent. Show that the
total cross-section is given by

g 8 (1 et logs> . (8)

" 1672s 167
Plot it for the following parameters: A = 0.2, and /s € [20,200] GeV. Confirm that
your one-loop correction is small in this regime.

(iv) Next, we study the ‘new physics’ signatures that would come from the new particle

. As a real scalar, the free part of its Lagrangian is

) 1
Lo =—3(0¢)* - M2 (9)

7]

Now the interesting terms in the action are those that will involve both ¢ and x

these will allow the new particle ¢ to influence the physics of the known particle y.
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Assuming that this new particle does not have a ¢ — —¢ symmetry, show that the

most relevant term involving both particles is
1 2
Lint = —599X" - (10)

What is the dimension of g?

(v) This interaction will give a correction to the yy — xx matrix element at O(g?).
Find this matrix element and draw the associated Feynman diagrams (use different
symbols for lines denoting different particles). Your answer should diverge when s, ¢,
or u — M?. You run to your experimentalist friend to tell them about this spectacular

effect.

(vi) On your way home after your experimentalist friend laughed at your divergent
answer, you remember Problem Set 7, where you had found that heavy particles should
be unstable, leading to a finite ‘width’ I to their propagators. Assuming for simplicity
M? > s,t,u > m?, show that you can take this into account by replacing the heavy
particle propagators in your answer by:

—1 —1

% .
I)2+A[2 p2+;\12—f[‘1“1

(11)

Sketch the diagrams that are now being taken into account. In that problem set we

were working in D = 2, and had found, in this limit, I' = a% with dimensionless

number a = % Using dimensional analysis in D = 4, guess the expression for I
up to the dimensionless number a. [We could obtain this number a by repeating
Problem Set 7 in D = 4, but we will not do this]. Compute the O(\g?) contribution
to the differential cross-section do/d€cy;, and integrate over angles to obtain the
total cross section [do not expand out I', i.e. keep it in the form (11)]. Finally, plot
your final cross-section, keeping the O()), O(A2) and O(\g?) terms, using the values:

a=5,9g=0.8, A=02, M =125 GeV, zooming in on the regionK/s € [100,160] GeV.
Compare your plot to https://home.cern/science/physigs/higgs-boson/how. (The

energy scale on their y axis is slightly different than ourg their /s is fixed, and instead

Vt or Qcy is varied.)

For D=t ot = -2 44X Ll=]
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