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1 Introduction

title: entanglement and instability in tripartite optomechanical systems with detuned drives

abstract: We consider optomechanical realization of such bosonic system and use the well-established
approach of quantum Langevin equations(QLEs)

It’s common practice in modern quantum information science to create entanglement between multiple
parties via quantum channel mediated with ancilla, and this process could be described by a correspond-
ing quantum operation, or inversely, a global quantum operation is enabled via multipartite entanglement
and LOCC(local operation classical communication). Fidelity of LOCC-based communication protocols
is enhanced by either quantum error correction techniques or pre-established entanglement in physical
systems, we are focusing on the latter. Fundamentally, the only way of creating entanglement is through
either direct or indirect interactions mediated by gauge bosons. Aside from entangling objects at atomic
levels, it is of broader interest to explore the possibility of entangling macroscopic, massive bodies, and
radiation pressure force(as one type of direct interaction) is found to work effectively for this goal[I].

Establishing entanglement in hybrid systems could be achieved via a quantum interface capable of
transferring quantum state between different degrees of freedom. In this context, an intermediate me-
chanical resonator between target electromagnetic modes within cavities well perform this role, and we
get a typical three-mode system which may well serve the goal of quantum communication[2], mechan-
ical transduction, and entanglement generation. In generic optomechanical systems, where photons are
confined within an optical cavity coupled to a small-mass mechanical resonator, by setting one mirror
much lighter than the other for the conventional Fabry-Perot setup, the accumulated radiation pressure
force from photon reflection leads to observable optomechanical effects. However, the energy scale dif-
ference(THz vs MHz) forbids us from efficently coupling photon and phonon excitations. This problem
could be solved by supplying extra drive to optical cavities. While bare cavity could be treated as
harmonic trapping potential and operator of single mode a possesses a discrete set of eigenstates(Fock
states), the quantum state within a driven cavity is approximately coherent state, which is a superpo-
sition of Fock states. Physically, when optomechanical coupling is not strong and perturbation picture
applies, the driven cavity plus vacuum noise from supply port acts as engineered reservoir for the me-
chanical resonator. A red(blue)-detuned input photon absorb(emit) a phonon from mechanical resonator,
in order to excite the resonant optical cavity mode. The red-shifted, and asymmetric noise spectrum of
reservoir results in a net damping rate (reduction of occupation) for the mechanical resonator[3]. Known
as cavity cooling, this techique is successfully applied to cool mechanical resonators to its motional
ground state in the far-detuned regime, and is favorable for generating entanglement robust against
thermal fluctuations. Based on this idea, one could deliberately engineer the coupling of given quantum
system to a cold disspative reservoir and design unique steady-state entanglement after time evolution[4].

As a type of system(two or multi-mode optomechanical system with drive) brought to attention in
the early 20th century, since the development of experimental technologies make regimes of theoretical
interest realizable in labs, there have seen a significant number of related studies in the past decades.
A classical treatment[8] verified the presence of multipartite entanglement in radiation pressure-coupled
mirror and driven cavities. Three-mode system with symmetric side drives that are both red-detuned
allows for efficient transfer of quantum states between cavities[]. In contrast, anti-symmetric drives that
offset oppositely from resonance frequency provides practical means of creating steady state intra-cavity
entanglement. The effect of non-resonant drive detuning along with other system parameters were dis-
cussed in [6], [7], and they reached the same conclusion that anti-symmetric(opposite) drive detunings
at exact mechanical frequency(motional sidebands) A = twy; provides the condition for optimal entan-



glement, as is the case we will be going through in following discussions. A counterpart system using
Lindblad equation approach is discussed in [9], and they propose to achieve a highly pure two-mode
squeezed state by optimizing two or four drive tunes. From above mentioned studies and vast studies
that were not mentioned, three-mode bosonic system with one intermediate mode and two target side
modes with anti-symmetric drive stands out for the goal of creating macroscopic entanglement. Spe-
cially, [4] pointed out this type of three-mode system enables us to achieve an amount of steady-state
entanglement that surpass the limit allowed by a coherent parametric interaction. We are going to look
into this type of system and discuss its possible mechanism and implications.

2 Model

2.1

Continuous variable entanglement gained attention as opposed to discrete ones (e.g. qubits) for its
convenient access to continuous quadratures of target mode. Another outstanding feature is uncondi-
tionalness, which results in imperfection of obtained entanglement and leaves room for optimization[I0].
Entanglement in our context is defined as the correlation between fluctuation operators around steady
state, achieved at infinite time in a mean-field spirit. As will be followed by a set of approximations
we discuss later, the Gaussian nature of quantum states(along with noises) are preserved following the
evolution of linearized system Hamiltonian, and we get a c-number steady-state(eigenstate of a) plus
fluctuation with zero-mean value. This could also be represented by a displacement transformation, with
D(a) = exp(aal — a*a), Df(a)aD(a) = a + a. Around critical points fluctuation could become signifi-
cant and this type of operator expansion a = (a) + d might no longer be a good approximation. While
pure state entanglement is readily characterized by von-Neumann entropy, establishing an entanglement
monotone which does not increase under LOCC for mixed states is still an ongoing attempt. We consider
the widely accepted notion, logarithmic negativity Ex. Entanglement of bipartite mixed states(in our
case gaussian states that could be represented by Wigner functions in phase space) is easily characterized
by this computable measure[I]].

As a measure of bipartite entanglement for two-mode gaussian states that satisfy bosonic commuta-
tion relations [d;, &;] = 0;;, we introduce logarithmic negativity Ey = max[0, —In2n~], with n the lowest
symplectic eigenvalue of covariance matrix V' (see Appendix.C). We expect to transform the covari-
ance matrix V to its standard form[I0] via local linear canonical symplectic operation which preserves
the uncertainty relation. To be more specific, Heisenberg uncertainty principle place restrictions on
fluctuations of observables that do not commute. For Hermitian operators A and B that satisfy com-
mutation relation [A, B] = [AA, AB], we have ((AA)2)((AB)?) = 1/4 (([AA, AB]? + ({AA, AB})Q) >

1/4/([AA, AB])[2. We soon find that ((A#)2)((Ap)?) > 1/4, as in below matrix, this is always satisfied
with ny,ng > 0. For coherent state, ((A%)?) = ((Ap)?) = 1/2, and ny,ny actually quantifies the devia-
tion of one certain state(steady state within cavity in our case) from coherent state (one special case of
minimum uncertainty state where the equation sign holds).

The special type of covariance matrix we will be dealing with in the {2, g1, 2’2, o} basis is
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Under a special case ng, = nypp = 0, Ngp = Npe as will be shown in following calculation, the condition
for non-zero En is \/ning < |ngp| < y/(n1 + 1)(ng + 1), which is consistent with Simon’s separability
criterion[12] 4(ab—c?)(ab—c3) > (a®+b%) +2|cicz| — 1/4. Within this range, and for fixed ny, ng, there’s
optimal |n,,| to maximize Ey.

2.2
canonical commutation relation
We provide analytical solution of steady state occupation and correlation terms of a generic dissipative

three-mode bosonic system with anti-symmetric drives. We confine our discussion to an optomechan-
ical realization, but the physical process applies to general bosonic systems coupled with parametric



interaction. Consider a three-mode system with two optical modes coupled to one mechanical mode via
radiation pressure, and each optical mode is subject to a coherent drive wy 2 = w. = A. We keep our
discussion within the condition of exact drive detuning A = 4wy, which could be fulfilled readily with
contemporary fine-tuned signal sources. We also restrict attention to only one/two of the many possible
mechanical/optical modes from system. We have

H = wybth+ Z (Wid;rdi + gid;'rdi(l;T + 3)) + Haigs

i=1,2

Dynamics of this Hamiltonian with nonlinear optomechanical interaction could not be solved ana-
lytically in principle, but we are able to linearize around steady state via operator expansion. To gain
the linear QLEs we assumed large coherent amplitude «, which depends on the input power(circulating
photon number) and is made real by appropriately choosing a phase reference, so that to drop the non-
linear quadratic photon terms. This is not in contrast with the weak coupling assumption for operator
expansion, since this linearize treatment still holds for ¢ < k. Move to a rotating frame(interaction
picture) with respect to cavity drive to get effective Hamiltonian

Hegr = wy (b0 + didy — dlds) + Hine + Her + Haiss
Hint = glal(l;cf{ + CillA)T) =+ ggag(i)dg + dzi)f)
Her = gloq(i)d} =+ CZPA)T) + ggag(l;cg + 62261)

In this picture evolution of quantum states is governed by H.g and operators rotate respect to cavity
drives. By working in resolved-sideband regime wy; >> k1, k2 (period of mechanical oscillator is much
smaller than photon lifetime), we could further drop fast-oscillating(counter-rotating) terms emerged,
known as rotating wave approximation (RWA). The bare optomechanical coupling g is enhanced by the
average coherent amplitude «, which could be large under strong drive, and is controllable, for example,
by applying modulated/pulsed optical drives, we then introduce effective coupling strength G; = g;«;.

After above treatment we get below equations of motion. This QLE treatment allows us to reach small
damping as well as strong coupling regimes beyond Lindblad master equation approach[I3].
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The noise terms obey commutation relation (fin(£)fi (#)) = (ngin + 1)8(t — '), ngin denotes ther-
mal occupation of corresponding bath. While each driving port of optical cavity is associated with a
zero-mean Gaussian vacuum noise, the mechanical resonator suffers from Brownian noise, which obeys a
different statistics and leads to the vulnerability of entanglement against environment. Thus we assumed
relatively large quality factor of mechanical resonator so that to restore the Markovian feature of its
noise terms[I4]. Correlation of the resulting mechanical "input noise” term (mean thermal excitation
number) (l;;rnl;in> = np in then has temperature dependence and obeys Boltzmann statistics.

Detailed expressions of occupation is available in appendix. Specially, setting G2 = 0 the tripartite
system degrades to a bipartite optomechanical system with red-detuned drive, and it mediates an effective
state-transfer(beam-splitter) interaction l;dM{ +dbt. We get steady state occupation of mechanical mode
ny that shows dependence on mechanical bath temperatures and cavity vacuum noise, and these thermal
occupation numbers could be further reduced by tuning enhanced optomechanical coupling strength
G, as is the well-known result of cavity cooling[3]. A higher-order occupation expression beyond RWA
treated with perturbation expansion is available in [15].
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Setting G; = 0 we get a blue-detuned driven bipartite system governed by parametric (two-mode
squeezing) interaction bdy + dib'. Below equations are consistent with [I6],[I7](note the convention
difference G — 2Ga,k — k2/2). We also notice the stability condition manifests itself in occupancy
expression, ensuring positivity, and is consistent with Routh-Hurwitz Criterion[I8]. The occupation
numbers become significant around critical points implying anti-damping, and the associated noise terms
are amplified as well.
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The calculated logarithmic negativity Ex of this blue-detuned driven two-mode bosonic system is
upper-bounded by the stability condition applied on G5, showing the limitation of amount of produced
entanglement governed by two-mode squeezing Hamiltonian. (how to get tms vacuum from here?) Not
only is En limited by the maximum G5 that could be achieved, but the Ey it self converges to a constant
value. The steady state only exists for a usually weak coupling strength G < \/yr2/2, we will see the
three-mode system makes a difference.

Np2zp = Nb2pr = (nZ,in + Nb,in + ]-)

4G
7+ K2
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The three-mode system is a combination of above mentioned state transfer(cavity cooling) and para-
metric amplification(two-mode squeezing) process. At zero temperature vanish noise terms we get occu-
pation and correlation expressions

4G3k2(4G3 ko — 4G3K1 + Kk1(y + K1) (K1 + K2))

ny, =
"7 ((4G3 +vk1)kre — 4G3k1) (AG3 (7 + K1) — (7 + K2) (4G3 — (7 + k1) (K1 + K2)))
= 16G2G3ka(7y + K1 + ko)
((4GT +vk1)k2 — 4G3k1) (AGT(y + K1) — (7 + K2) (4G5 — (7 + K1) (K1 + K2)))
ny — 4G3(4G3 (v + k1) (K1 + K2) — 4G%yk1 + YR (7 + K1) (K1 + K2))

((4GT + vh1)ko — 4G3k1) (AGT (v + K1) — (7 + K2) (4G5 — (v + k1) (K1 + K2)))

correlation between mechanical mode and each optical mode:

1 1
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2Gak2 (AGT (v + K1) — (v + K2) (4G5 — (y + k1) (K1 + K2)))
(4GTk2 — 4G5k + yh1k2) (4GT (Y + K1) — (v + K2) (4G5 — (v + K1) (K1 + K2)))

correlation between two optical modes:

Np2azp = Nb2pe =

ny + % Ni12zx

ni+ % N12pp
N2z ng + %

N12pp ng + %

e —4G1Gaka (4G3k1 + 4G (v + k1) + k1 (7 + K1)
Pee = T T (4G — 4Gy + yRikz) (AGE(v + K1) — (7 + R2) (4G — (7 + A1) (k1 + K2)))

We notice there’s non-zero displacement-momentum(x-p) correlation between fluctuation of the me-
chanical and optical modes, and for the target optical modes there exist x-x and p-p type correlations,




as is usually observed in EPR-type or Stern-Gerlach-like experiments. We also notice the x-p correlation
in V41 enabled by beam-splitter type interaction does not lead to contribution to entanglement. The
intra-cavity entanglement we get roots from parametric amplification between mechanical mode and
blue-detuned driven optical mode 2, and the generated correlation is further transferred to red-detuned
driven optical mode 1.

From above relations we are able to plot analytically intra-cavity entanglement Fn dependence
on varying optical damping terms. There’s optimal coupling strength to maximize entanglement, and
smaller damping is more favorable for larger absolute value of entanglement peak. (expression?) The
optimal value easily corresponds to a strong coupling regime. Purity is given by symplectic invariant
u = Tr[p?] = 1/4v/detV. With provided set of parameters there exists a range of sy that we get
considerable entanglement without sacrificing purity. (should we go further on this?)
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Figure 1: Entanglement En dependence on G with fixed G at zero bath temperature. k1 = 27 x 50 x
103 Hz; v = 27 x 0.8 x 10% Hz; G1 = 27 x 2 x 108 Hz; ko values: 27 x 50 x 10% Hz, 27 x 500 x 103 Hz,
27 x 5 x 10® Hz;
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Figure 2: purity x4 dependence on Gy with fixed G at zero bath temperature. x; = 27 x 50 x 103 Hz; vy =
27 x 0.8 x 10% Hz; G; = 21 x 2 x 10 Hz; ko values: 27 x 50 x 103 Hz, 27 x 500 x 10% Hz, 27 x 5 x 103 Hz;

As could be seen from Appendix.C,E, covariance matrix of the two target optical modes has the form



of a two-mode squeezed thermal state. (what if we treat the squeezing operation/Bogliubov transforma-
tion as representation transformation? how to get this state from given Hamiltonian?)

U = exp(rdids — h.c.)
H = glOll(lA)CZJ{ + CzllA)T) + ggag(lA)d} —+ Cgi)'r)
du
H' = UHU" +ih—-U"
what is the relationship between squeezing parameter and Gt?7
As is discussed in [6], the mechanical mode mediates a time-dependent retarded parametric two-mode
squeezing interaction between two target modes, which is resonantly large at exact detuning A = £wy;.
The thermal robustness of the Bogoliubov-mode-based schemes hinges on the achievement of a large

multiphoton optomechanical coupling rate that far exceeds the damping rates of the relevant optical and
mechanical modes.

Under a special condition of symmetric damping, i.e. setting k1 = ko = k the above equations
reduces to.

oy — 8GIG3 (7 + 2k)
(v + K)(4GF — 4G3 + vr)(2G3 — 2G3 + k(7 + K))
ny — 403 (2637 +4GR(y + K) +8(y + 5))
(v + k) (4G? — 4G3 + k) (2G? — 2G2 + k(v + K))
nr — 2G1G2 (4G3K + 4G} (v + K) + v6(y + K))

(v + k) (4G? — 4G3 + vk)(2G? — 2G2 + k(v + K))

By applying Bogliubov transformation(two-mode squeezing as unitary operation?) to field operators
dy, da, we could recover expression of occupancy and correlation of 84, S5 provided by previous work [4].
We should note that the diagonalization of given Hamiltonian is dependent on non-Hermitian dissipation
terms —ihvbTb —1hk djdl — ihﬁgd;dg (to be confirmed, the Bogliubov mode should have something to do
with symmetric damping), and the existence of mechanical dark mode 8 is only valid under symmetric
damping k1 = k2. The decoupled, thus unchanged occupancy of np = sinh?(r) = G2/(G? — G2) ensures
N2 = —% (m%‘ + nz%),

dark mode: is it decoherence free subspace? what is the dark mode?

Intuitively, when the detuning |A| = wy is much larger than optical and mechanical damping rates,
we could adiabatically eliminate the mechanical mode and get an effective parametric interaction be-
tween the two target modes.

automatically induces an effective interaction between optical modes

2.3

Before discussing non-equilibrium dynamics of provided system, let’s make clear its stable regime
and locate critical points. The stability condition could be obtained either from applying Routh-Hurwitz
criterion to dynamical matrix gained from the QLEs, or ensuring positivity of the occupation expressions
we derived. The system become unstable under conditions

or

G2 < min \/%L“1 <G§+ (”+“2>(“1+“2)),\/G§+7“1+7"2+’i1“~'2

¥+ Ko 4

The ”turning point” we saw in previous plots is . We should also notice that G; is associated with
coherent amplitude «;, and this amplitude itself might reveal multi-stability.



antidamping can lead to amplification of thermal fluctuations, and finally to an instability if the full
damping rate becomes negative (good for entanglement but thermal fluctuation is also amplified?) In
that case, any small initial (e.g., thermal) fluctuation will at first grow exponentially in time. Later,
nonlinear effects will saturate the growth of the mechanical oscillation amplitude.

In order to understand stability behavior of our system and locate critical points, we revisit the simple
two-mode optomechanical system model with blue-detuned drive. We get equations (no need? directly
start with three-mode)

d - ) “ .

ab = (—iwm — %)b — iGadh — \/Abin (5)
d N ) N i N N
Sl = (i - %)dg +iGab — \/Radb 5, (6)

we get steady state solutions

for a fixed set of parameters, A can in general take on multiple stable values, corresponding to several
stable attractors of this dynamical system. This effect is known as dynamical multistability, and in
experiments it may lead to hysteretic behavior

In the quantum regime, the parametric instability threshold is broadened due to quantum fluctua-
tions, with strong amplification of fluctuations below threshold

phase transition?

2.4

pulsed scheme: eliminate the driving term by going into a time-dependent displaced picture, Phys-
RevA.84.052327

the verification of entanglement between the intracavity field and the moving mirror has to be per-
formed via measurements on the outcoupled light leaving the optomechanical system. Ultimately only
correlations between modes of the light field are measured, from which any entanglement involving the
mechanical oscillator has to be inferred

time-dependence, oscillation of entanglement

In contrast to schemes that work in a steady-state regime under a continuous-wave drive, this proto-
col is not subject to stability requirements that normally limit the strength of achievable entanglement

The effect of time-dependent counter-rotating terms is discussed in[9], and they found a degradation
of entanglement and potential instability.

Entanglement dynamics based on a pulsed scheme (using Sgrensen-Mglmer approach) is discussed
in [I9] [20],it is similar to the three-mode setup with detuned drives we discussed, but use optical driv-
ing pulses. works in weak-coupling regime. They showed noise-resilient entanglement achieved at time
frames where the mechanical mode is eliminated.

2.5

to be figured out:
https://doi.org/10.1364/0E.25.017237 implies variance in intensity could possibly surpass the bound of
stable regime. They also claim the dynamical approach they used could be applied beyond dynamical
stable regime

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.87.063846 Here, we point out that it is
possible to exactly null the deleterious effects of asymmetric optomechanical couplings by introducing
additional parametric drives on each mechanical resonator.



3 Discussion

Provided above solutions, we might still hope to discuss about several aspects of this scheme. Why
this scheme allows larger entanglement than two-mode squeezing coupling? Why the intermediate me-
chanical mode mediates coupling between the two target modes, and the final entanglement contains no
information of the mechanical mode? What is the role of extra cooling on mechanical mode? What it
possibly imply by the stability classes?

non-Hermitian

The optomechanical system of two coupled optical modes can also be viewed as a photonic version
of the Josephson effect and its classical dynamics can give rise to chaos

instability /bi-stability and entanglement

Entanglement generation by parametric driving[21] (Its robustness against thermal influence is en-
hanced, since it employs parametric instabilities for entanglement generation?)

quantum optomechanics in the bistable regime[22)], tristability[23]

It is remarkable that independent of the particular form of the initial state of the system, the mechan-
ical oscillator periodically returns to its initial state, and leaves the optical modes increasingly entangled
upon each return. The entanglement is generated through the mechanical motion of the system. How-
ever, the final entangled optical state contains no information of the mechanical system, and can thus be
robust against thermal Brownian noise that enters the system through the mechanical oscillator. Note
that in the limit that far exceeds, the mechanical degrees of freedom can be adiabatically eliminated.
This is interesting.

4

Some of above mentioned content is inspired from a textbook ”Quantum Optics” by Guangcan Guo.



Appendix A. treatment(delete, but might be useful for the thermal state)

For a generic unitary transformation U (t), |¢(t)) = U(t)[(t))

o)) .dU(t) ~ L
i— =i = U e(0) + UHU|6(1)

= (OHD +1501)/6(1)) = Herlo(1)

used formula )
eBe ™ = B+ [A,B] + 114 1A Bl + ...

. T s ~’[ s
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elwa ataTe iwa'at _ a‘l'elwt

Apply to the considered system we get effective Hamiltonian

H = waATlA) + Z (w,djci, + gi(l;T =+ B)ELIGZ) + Hgiss
i=1,2

Hy = (w1 — wM)aIal + (w2 + wM)agag
S AU ~, ~ .
Hyg=UHU + iEUT, U = elflot
Heyg = wM(bTb + aial — (l;ag) + g1 (bJr + b)aJ{al + gg(bT + b)aéaz + Hgiss
apply operator expansion a = o + d to get

Heg =~ wM(bTb + dJ{dl — dgdg) + glal(f)dﬁ + CillA)T) + 92052(66{2 + CglA)T)
+ g101 (Z)(jl + (ZIE)T) + ggag(l;cg + ngi)T) + Hgiss

Appendix B. occupation

Denote w — wy as w (choose wy as reference) we get solutions in frequency space:

by = IR )b — i 1) VaCirdin i 4 1) RaGaday
(w+i%) (w+id)(w+i%) + G3) — G2 (w +1%2) " " Zin
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dy(w) = v = e 5 3 — — = X1pbin + X11d1,in + X12d5 3y
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: i(w + %) AGobin +iy/R1G1Gadrin — i (w +13)(w +i%) — G3) /Rzdb 5, t
d2(w) = TR i Ko 2 2 s Ko — = X2bbin + X21d1,in + X22d2,in

(w+i%) ((w+iF)(w +1%) + G3) — G (w +1%)
We notice that Onsager reciprocal relation is satisfied for the generalized susceptibilities xr; = — X,

we also expect the Kramers-Kronig dispersion relation holds.

We will then be able to calculate the

correlators in covariance matrix by integrating along real axis in complex Fourier plane(frequency space).

e.g.
1

2w
We get following expressions of steady-state occupation.
’i% 2
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with coefficients

1
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Appendix C. correlation

V is the 4 x 4 covariance matrix of the two modes of interest,

A C
V= (CT B) ,X=det A+det B —2detC

1
- \/ - —4 det 1%
There’s non-zero entanglement when =~ < 5, or equivalently, with X > 4det V + i, we have Ex > 0.

We consider expression for covariance matrix V and entanglement Ey in terms of bosonic operators.
The fluctuation associated with a given operator d; = (d;) + d; in phase space could be described by

" . . . R di+dl . .d; d
Hermitian opertors(dimensionless quadrature variables) &; = 73 bi = —1

covariance matrix we will be dealing with in the {2, p1, 2%, pa} basis is

(A C (m+i ~(na+13  (Nax Map
V_<CT B)’ A_< ni+31)’ B= ng+ 1) ¢= Npz  Mpp

where the occupation terms are calculated upon operator expectation over steady states

. The special type of

1 1, .- A PN YIS
Mo = 5 (@102 + 2201) = 5(didz + dldy + dyd} + d}d})

1, [ R
Mpp = §<P1P2 + Pap1) = _§<d1d2 ~ djdy — dyd} + didj)
Nap = §<5U1P2 + padn) = 7<d1d2 +d{dy — dyd} - dfdb)
1, i o 5
Nps = 5(171332 + Doph) = 7<d1d2 — d{dy + dyd}y — dld})
ny + % Nbizx Nbizp ny + % N2z N12ap
Vi — np + % Nhipx Nbipp i=1,2: Vi = ni + % N12px N12pp
! Npizx Nbipx n; + b ’ T N12zx N12pax ng + b
Npixp Nbipp n; + % N12zp Ni12pp ng + %

Nplze = Nblpp = 0

K K1k3 1

Nplap = —Nblps = — (21]2 + 18 211) VG (N, in + 5)
_ K1k 1 G3ka K3 v 1
1,G1G in = - - 1 —1I G in a
5 11tn 5(na; +2)+< ( 9 3 )1+22 k1G1(na, —|—2)
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)IQ + (G% + ’)’:1)2],1> H2n27in + IllilG%Gg(nl,in + 1)



Np2zz = Nb2pp = 0
Hgli%

8

K 1
Np22p = Nb2pz = <2212 + 11) YGa(Npin + 3)

2

K1K 1 G3k K2 1
+ %G%GQ(TH@H + 5) + (( 12 ! + %)Il + ;IQ) KZQGQ(n27jn + 5)
KR1K2 1
N12ge = —Ni2pp = — (L2 + Tfl)GlGQ’Y(nb,in + 5)
K 1 K 1
- (12 + (G§ — %)h) k1G1G2(n1in + 5) + (12 — (G% + %)h) koG1Ga(ngin + 5)

Ni12zp = Ni12pz = 0

EPR type

Appendix D. Bogliubov transformation

(simplify with commutation relation)

B4 = dycoshr + dg sinhr, Bp = dJ{ sinh r + ds cosh r
ﬂL = di coshr + ds sinh r, ﬂ;g = dy sinhr + d; coshr

ny =did, = ﬂLBA cosh? r + (5;53 + 1) sinh?r — (BLBL + BBBa) coshrsinhr
ng = d;dg = B;;BB cosh? r + (BLBA + 1) sinh?r — (5};52 + BaBp) coshrsinhr
dids = BaBp cosh®r + ﬁTB,BL sinh?r — (BLBA + BgﬁB + 1) sinh r cosh r
didl = g8l cosh? r + BpBa sinh® r — (81,84 + 8,85 + 1) sinh 7 coshr
dJ{dg = BLBB cosh? r + ﬁBﬁL sinh?r — BpBp coshrsinhr — 52@1 coshrsinhr

d1d£ = BAB}; cosh? r + BLﬁA sinh? r — 673673 coshrsinhr — 5484 coshrsinhr

if dydy is real, as is in our case, did! = dydy, did} = dod; .

~ -1 -
Ba(w) = (in — 1w+ r + ¢ > ( 7ZG\/TY bin(w) — \/Edm(w)>

2wy —iw+ g iwy — w4 3

_ —VEdj, (w)
Prw) = iw — iwn + &
Ba = dycoshr + d; sinhr, Bg = dJ{ sinh r + da cosh r

din = dy i coshr +db . sinhr, d), = di

2,in lin sinhr 4 dg 4, coshr

(din(w)d},, () = ({d] ;,d1,in) + 1) cosh(r) sinh(r) + (db ;, dz,in) cosh(r) sinh(r)
(d},, (w)din(w)) = <d4{,md1,m> cosh(r) sinh(r) 4+ ((d;mdg’i@ + 1) cosh(r) sinh(r)
_ wlkt+y)
k(K +7) +2G?

(Ba(t)BB(1)) = (BB(1)Ba(t))

(Ba(t)Ba(t)) = (4] s in) + 1+ (b, d2,0n) ) cosh(r) sinh(r)

dody = BpBacosh®r + Bgﬁ}; sinh?r — (5};/33 + ﬁ;ﬁA + 1) sinhr coshr
d;di = ﬁ;ﬁz cosh? 7 + B85 sinh?r — (6;[3&3 + ﬁ;ﬁA + 1) sinh r cosh r

let me try to write down (4, 8p again
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_i(w + z%)\/ﬁdm + iéﬁbin
(w + i) (w+i}) — G?
() ()

FK
w 12

Ba(w) =

this is consistent with mma calculation below using the most general expression we calculated later.

(Ba0350) = 5 [ e o Pt F g )
1 i +ig 1
= — | dw 2 2 — | w{din(w)d}, (w
2m ((erig)(eri%)f(N}?) (w—i%) ’ (w+i%)(w+1i3) - G? in (2] ()
B @5b(e) = 5- [ de o e )
1 —i& 41 1
— — | dw 2 2 | w(d (W)dT (w
271'/ ((W*i%)(wfi%)—éz) (w+ig)+(w—i%)(oj—i%)—G2 < zn( ) m( )>
_ _27;(’%"’_7) t rt
- (2&11 + iH)(Qin _ K)H<dm(w)dm(w)>
"ol () (@)

Y + k(K +7)

Appendix E. thermal state

For two-mode squeezed thermal states, we write density matrix for canonical ensemble of this type
of gaussian state in terms of average photon number 7:

p= S(’I‘)pl,th oy ,4)2,15}1‘51(7“)Jf

i)
Pijth = Z —\ni+1 UZyAL
n;=1 (1 + n)n
ital ca;—al .
covariance matrix V in the {z1,p1,x2,p2} basis, x; = %, pi = 71% is [7],

(& 5o ) () e ( )

1
a=m cosh?r + ) sinh?r + 5 cosh 2r

1
b=m1 sinh?r + Ty cosh?r + 5 cosh 2r

—_

c= i(ﬁl + 7ig + 1) sinh 2r

For fixed average photon number 71,73, when the squeezing parameter r is larger than a critical 7,
the two states are entangled. Above this critical number, entanglement Ey is linearly(?) dependent on
squeezing parameter r.

1 14201 +n? + 2ny + 10n1n2 + 8n3na + n + 8nyn3 + 8ninj
(1 +ny + n2)2

1
r> 1 cosh™

For two-mode vacuum states m; = fig = 0, critical 4, = 0, we get Ex = max[0,2r] = 2r.
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How to relate these two different expressions? (occupancy of bosonic modes, average photon number.
a more formal relation might be achieved by expressing number states |n) in terms of a. but thermal
states and coherent states are very different states. they might not be related.)

In order to relate between two types of expressions of Ey, we start from two-mode squeezed thermal
state, and express ¢ in terms of a and b. We get ¢ = %(a + b) tanh(2r). Suppose this two-mode squeezed
thermal state and two bosonic modes share the same covariance matrix, we get nio = %(nl + no +
1) tanh(2r). Both are generic gaussian states.

Appendix F. Stability

We have to ensure all eigenvalues of dynamical matrix M have a positive real part, or equivalently,
all have negative imaginary part

—iw + iwn + 3 iG4 iGo
M = iG1 —iw + iwyn + % 0
—i1Go 0 —iw +iwy + B

set det(M) =0

(w+ig) (@+i)w+i%) +G3) - Giw+i%) = (w—wi)(w — ws)(w — ws)

2
we have root relations
wi 4wy +wg = —i(2 + 2 4 22
! 2 2 "2
K K K1 K
wiws + wiws + wawz = —G1 + G5 — Jh TR M

22 22 2 2
2K1 | .Y K1 K2
25 Tlo oo
2 22 2
w1 2,3 are pure imaginary. We get instability conditions

. K2 .
Wiwaws = 1G%? —iG

o K1 o K2 Y K1 R2
- A
G22 G12—222
or YK YK K1 K
1 2 1 ~2 2 2
B e e e N
99 T T ™4 2=
7Y, K2\ 2 Y, Rl A2 Y, K1 K2, YKL Y K2 KiK2 Y K1 K2
112 AT Yo i (LANTRAL R VOO G IO A S S A A ]
(2+2)2 (2+2)1—(2+2+2)(22 22+22) 22 2
that is

K9 YKR1
> = (G? —)
G2 - K1 (Gl + 4

or

Go < min

Y+ K1 5, (v +r2)(k1 + K2) o, YKL | YkK2 | K1k2
RERIALY e Gzy Lt e M
\/7+/i2<1+ 4 VeIt o T
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