
Floquet theorem ensures quasienergy due to periodicity in time, just as quasimomentum
exists from periodic structure in real space in Bloch theorem. In contrast to possessing good
quantum number in energy-conserving systems, we denote driven system with corresponding
driving frequency, as a description of emerging dimension in parameter space. This setup,
with d dimension of Hilbert space described by internal degrees of freedom of system states,
and N synthetic dimension from possible manipulation and modulation of system parame-
ters, forms high dimensional Floquet lattice, and is found to specially allow for non-trivial
topological phenomena, possibly due to enhanced dimensionality and complex interactions
between them, for example, one parameter might act as effective gauge potential to the
other. The formation of topological nontrivial phases in high dimensional spaces reveals
itself through real space phenomena, most typically, quantized pump of energy or current,
tracing back to Thouless. Interestingly as result, we are gaining extra degrees of freedom
or even novel phases by applying seemingly constrained drives, each obeys exact periodic-
ity. By applying more and various types of drives, we are tailoring structure of parameter
space, creating layers in complexity and allowing for the unfolding and emergence of novel
phenomena.

In traditional Floquet theorem, to ensure unitarity, the diagonalization of evolution op-
erator UT requires Hermitian and periodic Hamiltonian H(t), results in below spectral de-
composition form:

UT =
d∑

n=1

e−iϵnT/ℏ |ϕn⟩ ⟨ϕn| , |ϕn(t)⟩ = |ϕn(t+ T )⟩ (1)

the eigenstates |ϕn⟩ of eligible UT follows periodicity, and Floquet Hamiltonian HF

is constructed with corresponding quasienergy ϵn. When the system is driven by N in-
commensurate frequencies ω1, . . . , ωN , the periodic part of the wavefunction can be gen-
eralized to a multidimensional Fourier expansion following number of absorbed photons
m⃗ = (m1,m2, . . . ,mN) ∈ ZN :

|ϕn(t)⟩ =
∑
m⃗

e−i m⃗·ω⃗t|ϕn,m⃗⟩, |ψn(t)⟩ =
∑
m⃗

e−i (ϵn/ℏ+m⃗·ω⃗)t|ϕn,m⃗⟩ (2)

where |ϕn,m⃗⟩ represents a Floquet lattice site, and Floquet Hilbert space is the direct
product of Hsystem with internal degree of freedom d, and Hdrive with infinite dimension ZN .
plug back to the Schrodinger equation to get

ϵn|ϕn,m⃗⟩ =
∑
m⃗′

Hm⃗−m⃗′ |ϕn,m⃗′⟩+ ℏ (m⃗ · ω⃗)|ϕn,m⃗⟩ (3)

the equation of this eigenstate problem has a tight-binding form, with Hm⃗−m⃗′ corresponds
to the hopping matrix, and m⃗·ω⃗ℏ represents the linear potential. such dynamics is analogous
to that of electron motion in superlattice potential, Wannier-Stark ladder, or photon motion
under effective magnetic field. While this analogy could have profound implications or
potential applications, we focus on its direct consequence on dynamics of Floquet lattice.

The eigen-equation above reveals the effective band structure in the synthetic lattice.
While this picture is comparable to metallic balls falling down a tilted grid, the quantum
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nature of this motion prevents it falling down all the way, but rather turning back peri-
odically, in Wannier-Stark localization/Bloch oscillation, when the drive/hopping is weak.
However, only with strong drive does the tight-binding model holds, and this is the regime of
interest, where hopping is strong enough crossing through multiple m lattice sites, resulting
in interference between wavefunctions and extended Floquet bands.

If this band is topologically trivial, what we have is coupling between Floquet modes
periodically, the wave package move back and forth without net transport. However, if the
Floquet band is associated with a nontrivial Chern number C, Berry curvature leads to a
path-dependent physical result, accumulating net drift from each periodic motion. Specificly,

v⃗ = ∇k⃗ϵ(k⃗) + E⃗ × Ω⃗k⃗ (4)

here, the effective force E becomes ℏω⃗, Berry curvature is Ω⃗q⃗, and v⃗anomalous = ℏω⃗ × Ω⃗q⃗.
this transverse drift velocity is in Floquet space denoted by (n, m⃗), and reveals transition
between different photon-number sectors m, that is, pumping of energy between driving
frequency ω.

Assuming the system is initialized in a single topological Floquet band, the long-term
average anomalous velocity is given by integrating the Berry curvature over the Floquet
Brillouin zone:

⟨v⃗⟩ = ℏ ω⃗ × 1

(2π)2

∫
BZ

Ω⃗q⃗ d
2q =

C

2π
ω⃗1. (5)

the resulting energy pumping rate between the drives is then

P12 = −P21 =
∑
i

ℏωi⟨vi⟩ = ℏ ω⃗ · ⟨v⃗⟩ = C

2π
ℏω1ω2 (6)

let’s try to verify this conclusion via numeric results.
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Consider a spin-1/2 particle driven by two elliptically polarized fields, corresponding
to two incommensurate frequencies ω1 and ω2. the time-dependent effective magnetic field
generated by the drive causes the spin state trajectory a path on the Bloch sphere. For chiral
Bernevig-Hughes-Zhang (BHZ) model, proper choose of mass m results in a trajectory fully
covering the Bloch sphere, manifesting topological phase. We choose a simplified version,
half of the BHZ model, that the tight-binding band structure is topologically nontrivial.

H = vx sin(k1)σx + vy sin(k2)σy + [m− bx cos(k1)− by cos(k2)]σz. (7)

this Hamiltonian could be mapped to Floquet space by substituting momentum k with
time parameter ωt+ ϕ. Upon further simplification we choose this special form

H(t)

η
= sin(ω1t+ ϕ1)σx + sin(ω2t+ ϕ2)σy + [m− cos(ω1t+ ϕ1)− cos(ω2t+ ϕ2)]σz (8)

Since the Hamiltonian is explicitly time-dependent and not amenable to direct diagonal-
ization, we employ a Trotterized time evolution approach:

U(t+ δt, t) ≈ e−iH(t) δt/ℏ ≈ I − iH(t)δt (9)

At each time step t, the wavefunction is updated iteratively from an initial spin state.
while this state might not be a Floquet eigenstate, the Trotterized scheme can approximate
adiabatic evolution along a single Floquet band in the topological regime, thereby enabling
robust energy pumping.

To extract energy pumping between the two drives, we compute the instantaneous power
from each frequency component and integrate over time to obtain the accumulated work:

Wi(t) =

∫ t

0

Pi(t
′) dt′ =

∫ t

0

〈
ψ(t′)

∣∣∣∣∂H(t′)

∂ti

∣∣∣∣ψ(t′)〉 dt′ (10)

We pay specific attention to the long-time transport behavior between the two drives.
In the topological regime, this reflects quantized energy pumping associated with a nonzero
Berry curvature of the Floquet bands. The net energy transfer can be interpreted as a
geometric effect connected to photon-assisted transitions between Floquet modes.
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Below figures contain numerical simulation results, showing normalized energy pumping
in and outside of topological regimes. These results indicate balanced energy transfer rates
for initial state (|0⟩ + |1⟩)/2, where residing in the topological regime ensures linear and
robust energy extracting/feeding process.

Figure 1: E1,2/ω2 for m = 1.2, 1.4, 1.6

Figure 2: E1,2/ω2 for m = 1.8, 2, 2.2

Figure 3: spin trajectory for m = 0, 1.8, 2.2
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