APPLIED PHYSICS

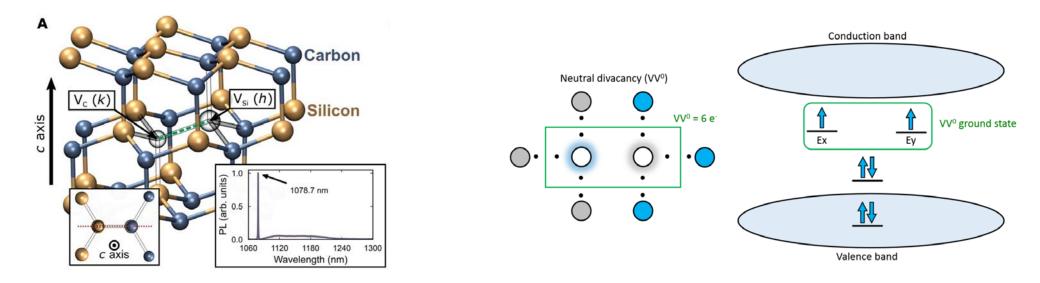
Electrically driven optical interferometry with spins in silicon carbide

Kevin C. Miao¹, Alexandre Bourassa¹, Christopher P. Anderson^{1,2}, Samuel J. Whiteley^{1,2}, Alexander L. Crook^{1,2}, Sam L. Bayliss¹, Gary Wolfowicz¹, Gergő Thiering³, Péter Udvarhelyi^{3,4}, Viktor Ivády^{3,5}, Hiroshi Abe⁶, Takeshi Ohshima⁶, Ádám Gali^{3,7}, David D. Awschalom^{1,2,8}*

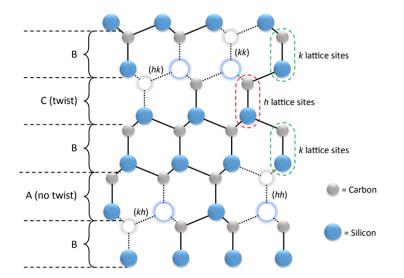
Ground state spins: weak coupling to environment, good coherence

Excited-state orbitals: stronger coupling to photonic & E fields

Neutral divacancy in silicon carbide



a localized C_{1h} symmetry system

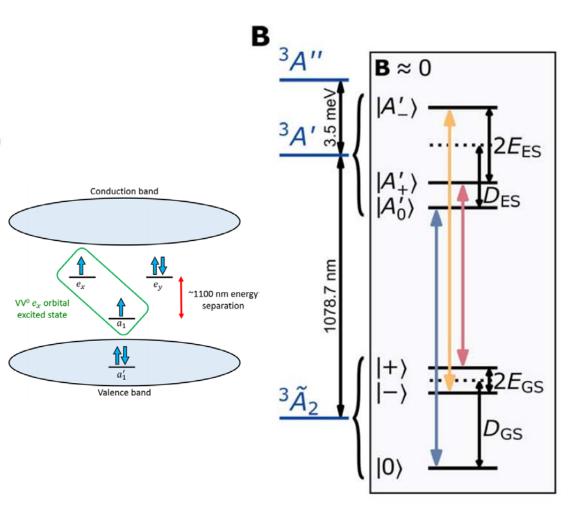


Hamiltonian of divacancy

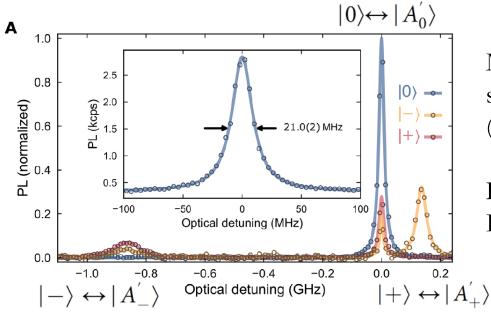
 $=\sum_{i}\hat{S}\cdot A_{i}\cdot\hat{I}_{i}$

Ground State Hamiltonian of divacancy qubit basis could be $Ms = \{|0\rangle, |1\rangle\} \text{ or } Ms = \{|0\rangle, |-1\rangle\}$ Singlet 11-11 = 10,0> 1 Zero-field H = SOC & spin-spin interaction $H_9 = \frac{1}{\hbar} (\vec{S} \cdot \vec{D} \cdot \vec{S})$ Zero field splitting tensor $\vec{D} = \begin{pmatrix} D_{xx} & D_{yy} \\ D_{yy} & D_{yy} \end{pmatrix}$ $= \frac{1}{\hbar} \left(\sum_{x} \sum_{x} \sum_{x} + \sum_{y} \sum_{y} \sum_{y} \sum_{z} \sum_{z} \sum_{z} \right)$ $= \frac{1}{\hbar} \left(\sum_{x} \sum_{x}^{2} + \sum_{y} \sum_{y}^{2} + \sum_{z} \sum_{z}^{2} \right)$ $S_{a}^{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $S_{a}^{4} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$ $S_{a}^{2} = \begin{pmatrix} \frac{1}{4} & -\frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$ $D = \frac{3}{2} D_{z}, E = \frac{D \times D}{2}$ D traceless $= \hbar \left(D \left[\hat{S}_{z}^{2} - \frac{S(SH)}{3} \right] + E \left(\hat{S}_{t}^{2} + \hat{S}_{z}^{2} \right) \right)$ $= \hbar \left(D \left[\hat{S}_{z}^{2} - \frac{S(SH)}{3} \right] + E \left(\hat{S}_{t}^{2} + \hat{S}_{z}^{2} \right) \right)$ With eigen energy & states = $-\frac{2}{3}Dt$, $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} \frac{D}{3} - E \end{pmatrix}t$, $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} \frac{D}{3} + E \end{pmatrix}t$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$; @ Effect of static magnetic field $V_8 = \mu_8 g'' S_z B_z + \mu_8 g^{\perp} (S_x B_x + S_y B_y)$ 3 Nuclear spins $V_{\text{nuclear}} = A_g'' \, \hat{S}_z \otimes \hat{I}_z + A_g^{\perp} \left(\hat{S}_x \otimes \hat{I}_x + \hat{S}_g \otimes \hat{I}_y \right)$

Excitated state longitudinal and transverse zero-field splittings D_{ES} and E_{ES}



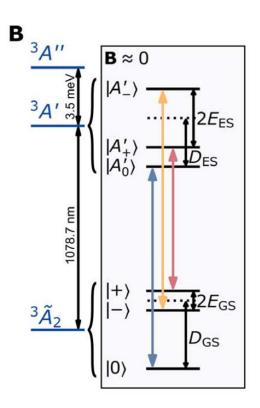
optical properties characterization

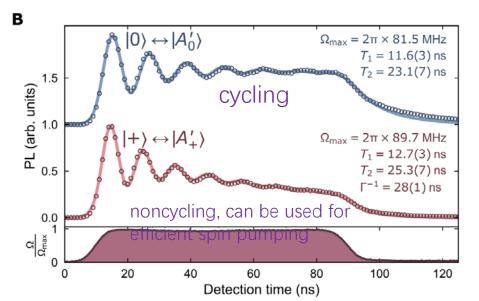


Map the fine structure of 3A' spin-dependent PL excitation (PLE) spectroscopy

D_{ES}: +970 MHz

 E_{ES} : -483 MHz





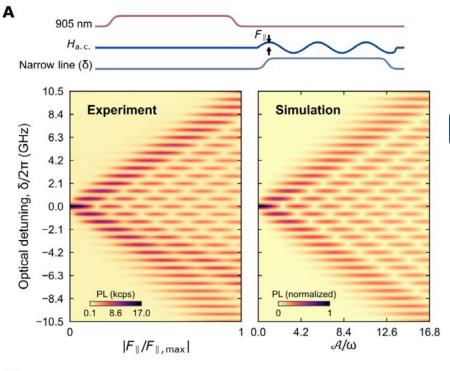
Probe the excited-state dynamics time-correlated fluorescence measurements

Optical TLS has near-lifetime-limited coherence

$$H(t)/\hbar = \frac{\Omega \cos(\omega_{\text{opt}}t)}{2}\sigma_x + \frac{\omega_0}{2}\sigma_z \qquad \frac{\Omega: \text{ optical Rabi frequency}}{\delta: \text{ laser detuning}}$$

$$\dot{\rho}(t) = -\frac{i}{\hbar}[H(t), \rho(t)] + \frac{1}{2}\sum_{n} \left(2C_{n}\rho C_{n}^{\dagger} - \left\{C_{n}^{\dagger}C_{n}, \rho\right\}\right)$$

LZS interference



$$|0\rangle \leftrightarrow |A_{0}\rangle$$

Arises when the TLS is repeatedly brought Optical driving through an avoided crossing diabatically,

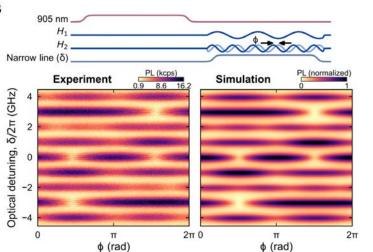
Stückelberg phase between each crossing

Stark effect

Multiphoton(15) resonances at detunings equal to integer multiples of drive frequency

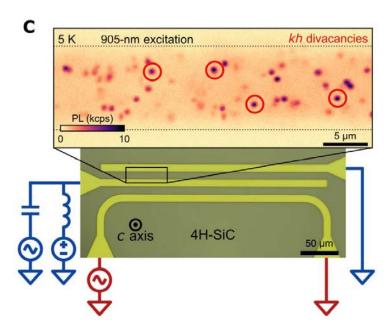
F: Amplitude of E drive

A: induced Stark shift amp

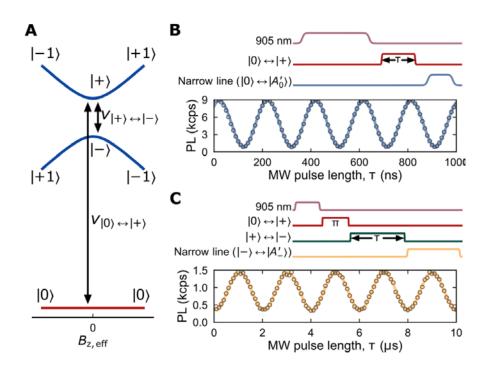


dc Stark shifts of excitedstate orbital levels

GHz ac electric field drive concurrently with the resonant excitation



ground-state spin system in single kh VVs

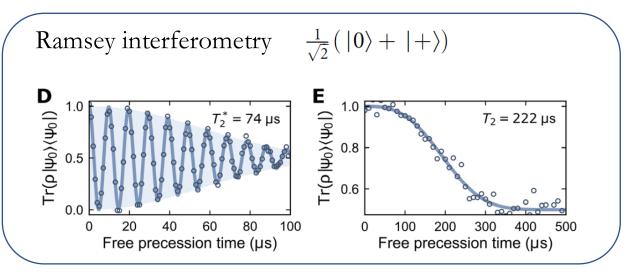


eigvec
$$(H/h) =$$

$$\begin{bmatrix}
\frac{E}{C_{+} + \sqrt{C_{+}^{2} + E^{2}}} | +1\uparrow\rangle + | -1\uparrow\rangle, & |1\rangle \\
\frac{E}{C_{-} + \sqrt{C_{-}^{2} + E^{2}}} | +1\downarrow\rangle + | -1\downarrow\rangle, & |2\rangle \\
\frac{E}{C_{+} - \sqrt{C_{+}^{2} + E^{2}}} | +1\uparrow\rangle + | -1\uparrow\rangle, & |3\rangle \\
\frac{E}{C_{-} - \sqrt{C_{-}^{2} + E^{2}}} | +1\downarrow\rangle + | -1\downarrow\rangle, & |4\rangle \\
\frac{|0\uparrow\rangle, & |5\rangle}{|0\downarrow\rangle, & |6\rangle
\end{bmatrix}$$

magnetically driven transitions between all three spin states

Rabi oscillations marked by high PL contrast



When a nonzero nuclear spin couples to the VV0

$$H/h = D\left(\hat{S}_z^2 - \frac{S(S+1)}{3}\right) + E(\hat{S}_+^2 + \hat{S}_-^2) + g\mu_B \mathbf{B} \cdot \hat{\mathbf{S}} + \sum_i \hat{\mathbf{S}} \cdot \mathbf{A}_i \cdot \hat{\mathbf{I}}_i$$