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1. (25 pts) A cosmic-ray proton (mass 940 MeV, in natural units where ¢ = 1) travels through
space at high velocity. If the center-of-mass energy is high enough, it can collide with a cosmic
microwave background (CMB) photon (the temperature of the CMB is 2.74K in its overall rest
frame) and convert into a proton plus a neutral pion (mass 140 MeV). The pion will then decay

into unobserved particles, while the proton will have a lower energy than before the collision.
What is the cosmic-ray energy above which we expect this process to occur, and therefore provide
a cutoff in the cosmic-ray energy spectrum? (This is known as the Griesen-Zatsepin-Kuzmin, or

GZK, cutoff.)
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2. A radar gun measures the speed of passing cars via the Doppler effect, measuring the beat
frequency between the emitted microwave radiation of frequency v and the returning reflected

radiation.

(a) (15 pts) Find the beat frequency as a function of the velocity v of the car as it approaches
the position of the gun. Take the radar gun to lie on the linear trajectory of the car.

(b) (10 pts) Estimate the accuracy of the radar gun in determining a car’s velocity at typical
highway speeds (say 30 m/s). Assume that the gun uses microwaves at 10 GHz and takes about
a tenth of a second to make its measurement.

(@) Let’s deree Don:]ev— effect  for )jll‘t_ s
T = (- o L6

= rly) = G-t UT—d)

= () + Zowo dt, = L
(1 + Zow) dt 03
it 1+%we R
T =y
\/\mem 8:0) %r — \l; (6(- na‘t’ 7(.4?‘\762 ‘t’uke M‘b—a

account °JC reflected Wave

E 1| = (-

beat uenc AY =
AFWJ] j al’loﬂey T"“"Efvmn‘ﬁgyb
inchde  reflection - ‘ Ve = [|FE R
H'F F I"F = H?K Vo ,

K p=E << av = (Hp-rp)v. = 22,

g c

vb et



v x 3o i
Q’) When = = A))::;Z(}}-Va - ;_xl?m :2"/07%:2“03}"'2‘
AL = Io" S - A‘J: = Jo HZ.

this will aﬁect S$e,ed ﬁxrec'ta‘ﬁon .

__C"]C 1 y o
Vevr"_'z—v,, —szonxl07 = 1.5 ""/5‘

_H’)IS S ‘H?e ur\cortafn‘\zgj v SJ)geJ Causeal

Lj o.] s measwemert  Time



3. (25 pts) A common phenomenon in particle physics is the scattering of two particles A+B
into two new particles C+D. For such events it is convenient to define the Mandelstam variables:
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u = —1u (P — Pp) (4 — PD)

where p!' are the 4-momenta. The beauty of these variables is that they are all Lorentz-invariant,
and so can be evaluated in whatever frame is most convenient.
(a) Show that s+t +u = m% + m% + mZ + m3,.

(b) Express the energy of A in the center-of-mass (CM) frame (in which the spatial compo-
nents of the total momentum vanish), in terms of the masses and the Mandelstam variables.

(c) Express the energy of A in the lab frame, in which B is at rest.

(d) Express the total energy in the CM frame.

(e) For scattering of identical particles, A+ A — A+ A, show that in the CM frame we have|

s = 4(p* +m?)
t = —2p%(1 — cosf)
u= —2p*(1 + cos @)

where p is the 3-momentum of one of the incident particles, and 6 is the scattering angle.
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4. (25 pts) Adam and Eve are undergoing uniform circular motion about the z axis at angular
velocity w and —w respectively (i.e. in opposite directions). At the moment they pass, Eve sees
Adam’s clock running more slowly, and so she expects that his elapsed time will be smaller the

next time they meet. Adam expects the opposite. What really happens? Explain by relating
their proper time intervals dr4, d7r to the time interval dt of the inertial frame at rest with
respect to their axis of rotation.
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1. (a) (10 pts) Show that the Lorentz (a.k.a. Minkowski) metric 7,4 is invariant under Lorentz
transformations
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Consider both boost transformations and rotations. It is sufficient to prove the result for boosts
and rotations around the three spatial coordinate axes, since a sequence of such transformations
is sufficient to generate the arbitrary Lorentz transsformation

(b) (15 pts) The electromagnetic field strengths E, B package into an antisymmetric tensor
of type (0,2)
0 -E, -E;, -FE,
E., 0 B, -B,
E, -B, 0 B.
E, B, -B, 0

E\ﬂ = = ')(,.‘1;g = (:)“3‘4“

where A, = (—®, A) is the four-vector comprising the electrostatic potential ® and the vector
potential A. Use these properties to derive the Lorentz transformation laws of the electric and
magnetic fields E and B.
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2. (25 pts) Consider the action

[ el [j [‘.n
S=-m ./(l/\ f(dl/\ )m(;/\ +q/(l/\‘4(,(.r(/\))(d1/\

for a particle moving along a worldline () in inertial coordinates z®. Show that this action

is invariant under (i) worldline reparametrizations A — £(\), and (ii) “gauge transformations”
A, — A,+0,A for any smooth function A(x) which vanishes at infinity. Show that the variational
principle for the above action leads to the equation of motion for a relativistic charged particle
of charge ¢ and mass m moving under the influence of the electromagnetic Lorentz force (Hint:
Choose proper time for the parametrization of the worldline.)
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3. (25 pts)

(a) Explain why a the density p of a conserved quantity and its flux j transform as the time
and space components of a 4-vector J. Show that conservation of this quantity amounts to the
continuity equation d,J* = 0, by considering the integral of this equation over a spatial volume V
and interpreting fv p as the amount of the conserved quantity contained in V' and the remaining
terms as constituting the flux of that quantity into or out of V.

(b) The energy and momentum of a free particle transform as a four-vector, and each is

conserved separately in any given Lorentz frame, dp,/dr = 0. Therefore there must be a four-
vectors’ worth of four-vectors — the energy-momentum currents — consisting of the energy, the
energy flux, the momentum, and the momentum flux. Find these quantities for a free relativistic
particle of mass m, and show that they form a symmetric two-tensor — the energy-momentum
tensor — of type (0,2) with components T,z in an inertial frame.

(¢) Show that the energy momentum tensor you found in part (b) satisfies the continuity
equation, as a consequence of the particle’s equation of motion.
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4. (25 pts) While the description of physical processes might be most convenient in Cartesian
inertial frames, one can in principle use other frames of reference. For instance, you are currently
in an accelerated frame that is rotating with the angular velocity of the earth’s rotation. Consider
a free particle described in the rotating frame

(t,z,y,2) = (¢',2' coswt’ + o sinwt’, y coswt’ — 2’ sinwt’, 2)

Expand the Minkowski interval ds? in the new coordinate system and evaluate the action for a
relativistic (uncharged) free particle.
Vary this action to obtain equations of motion of the form

’

e § ! « B oA
% + Ff},,',;r" V=0

Here the overdots denote derivatives with respect to the parameter A of the particle trajectory.
The second term is often moved to the RHS of the equation to look more like Newton’s equations
of motion, where it is interpreted as a “fictitious force” due to the acceleration. According to
Einstein’s equivalence principle, this force is no more fictitious than gravity! Evaluate Ff‘:.!, and
dentify the terms in your expression that are interpreted as the centrifugal force and the Coriolis
force.
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1. (25 pts) (a) Consider the unit sphere in Cartesian coordinates in R3:
S2 zl,22,2%) : (2')? + (22)% + (23)’ ' (1)

One can introduce “stereographic” coordinate systems defined on S?\ N and S?\ S (i.e. the sphere minus
one or the other pole) where N and S are the North and South poles (at z® = £1):

( 2z 2z ) (21, 22) :( 2! 22? )
1-z3)"(1-2%))’ AT \Q+2) A +23) )

There is also the natural chart of polar coordinates in which
ol 2 23) — (&t
(z',2%,2°) = (sinf cos¢,sinf sing,cosh),
forO<fl<m —nwT<op<m.

(i) Compute, and simplify y#(6, ¢) and z*(0, ¢). (Comment: You might find it easier to parametrize
everything using g rather than 6.)

(ii) Suppose W# = (0, 1) are the components of a vector in the (y!, y?) system in the coordinate basis.
What are the components in the (6, ¢) (001dinate system? Suppose V,, = (0,1) are the components of
a dual vector (a.k.a. covector) in the (y!,y?) system in the coordinate bds1s What are the components
in the (0, ¢) system?

(iii) Now define a Maxwell field strength on the sphere via
Fypy = msinf. (4)

Find the integral of F' over the two-sphere in these standard spherical coordinates by performing the
integral

/F(,d,dmdo . (5)

Comment: This integral arises as the integral over a Gaussian sphere that determines the charge on a
magnetic monopole.
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Determine both sets of stereographic coordinates y*
Locally, F can be written in any given coordinate patch as the skew-derivative of a one-form potential,
F = dA (i.e. Fyy = dgA, — D3Ag). Find such one-form or vector potentials, A and A, with F = dA
and F = dA, where A is smooth on the patch S2\N and A is smooth on the patch S\ S. Thus locally
in each patch, the field strength is a total derivative. So you might wonder, how is it that you got a
nonzero answer for part (iii)? The answer is that while it is true that locally F is a total derivative of
some vector potential, you cannot find such an expression globally. You should find that A is ill-defined
at N and A is ill-defined at S, so neither one can be used over the whole sphere to define F. Instead,

what one has is
/F:/ d;i+/ dA:y{(A—!l). (6)
Js2 Jby JDg .

where the intermediate integrals are over the northern and southern hemispheres, and in the last expres-
sion we have used Stokes’ theorem to write this as an integral over the boundary of these hemispherical
disks (the equator), being careful to keep track of the orientation.

(Hint: You will probably find simpler expressions in this and other parts of this problem if you work
out the corresponding expressions in the (6,¢) system first and translate back to y* (0, ¢) and z*(6, ¢).
Alternatively, where possible, skew-symmetrize expressions in (y',vy?), (21, 2%).)

(v) Compute the difference A — A in the overlap of the the two charts: S?\{N,S} and verify that
d(A — A) = 0 (i.e. that on the overlap, both A and A represent the same magnetic field strength F).
Can we write (A — A) = dA in the overlap of the two coordinate patches, so that they are related by
a gauge transformation? After all, ordinarily two vector potentials that represent the same magnetic
field are related by a gauge transformation in this way. (In the language of differential forms — see pp.
48-50 of the lecture notes — one says that d(A — A) = 0 usually implies that A — A is the differential of
a scalar A.) The problem is that the overlap is a band along the equator that has a non-trivial (circle)
topology, and the A one is looking for is not a single-valued function around this circle; thus there is no
well-defined function on the overlap having the required property.

Perform the line integral:

7 $ (a4 ™)

around the equator of the sphere to recover the magnetic charge.

Comment: The above construction is one of the simplest examples of a “topological charge” - the
magnetic charge is determined by the integral of a field strength that is locally trivial i.e. a total derivative,
but manages not to vanish when integrated over a closed manifold (i.e. without boundary) because the
trivializations (i.e. the potentials A(q) in terms of which one writes F' = dA(y) in the patch O) differ
from patch to patch in such a way that the aggregate integral is nontrivial. This is a key reason why it
is important to define quantities locally in patches on a manifold, and to be careful about the relations
between definitions on patch overlaps.
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> pts) Consider a coordinate basis for tangent vectors e, € 7, M in some coordinate chart O4).
This basis maps to operators on functions f : M — R via e, > 9/dz, so that a generic vector can be
associated to the operator
0
ok

One can think of the vector as implementing an infinitesimal translation via

v = v®
1+ e0) f(z) = F(=* +ev®)
For two vectors v, w, the commutator or Lie bracket [v,w] is defined by its action on functions f as
v, w](f)
It is written in the coordinate basis as

(8}

() I'H Lﬁ]

oze’

= (v*0qw? — w*p?

(a) Show that [v, 1,_1']‘j transform as the components of a vector under coordinate transformations.

(b) Show that the vectors J, = (y0. — 20y), Jy = (20, —0-), and J, = (zdy —y0:) act on functions
to implement or generate infinitesimal rotations around the x,y,z axes. Compute the commutators of
these vector fields. Construct a similar set of vectors for the generators of Lorentz transformations, and
evaluate their commutators with respect to one another, and with respect to the rotation generators.
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3. (25 pts)

. . . . . v . 2
(a) Find an example of two linearly independent, nowhere-vanishing vector fields in M = R* whose
commutator is non-vanishing. Note that these fields provide a basis for the tangent space at each point,
but this basis is not a coordinate basis because the basis vectors do not commute.

(b) Show that one can always find a non-coordinate basis {e,} for the tangent space such that
€a " €p = Mab

where 7 is the Minkowski metric. This basis is not a coordinate basis because the tangent vectors are
ek (x)d, in this basis are not derivatives with respect to the coordinates, but rather linear combinations
of them that change from point to point, hence going away from a given point along e, deviates from
any given coordinate direction. The e, are then known as a tetrad basis in GR; more generally in
n-dimensional geometry they are called frame fields. Show that the components e}, of the tetrads in the
coordinate basis associated to coordinates z#* have the properties

Hovab g

v o
€a€pT g Fﬁ €p9uv = Mab

a

it 1s the

Show that the matrix whose components are the components of the dual (“one-form”) basis €
inverse of the matrix whose components are the components of the tetrad e.

(c) Construct the components el of the orthonormal frame fields for spherical polar coordinates on

R3, and their dual one-form components €ji-
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4. (25 pts)

Consider a rocket moving along the positive z-axis on some trajectory in the (z°,z!) = (¢, x)
coordinate system. Let v#(7) be the proper 4-velocity of this rocket. Since v,v* = —1, this 4-velocity
can be parametrized via:

v* = (coshw(r), sinhv(r)),

for some function, v(7).

(i) Find the function v(7) that describes the rocket under constant proper acceleration, a. Find
z#(7) for an observer with constant proper acceleration who starts from rest at z = zp on the z-axis at
proper time 7 = 7.

(ii) Show that for small values of ¢ this gives the standard kinematic result for constant acceleration.

Show that for large values of t, u = ‘(‘;—f limits to ¢ and that the proper time, 7, measured on the rocket

behaves as 7 ~ % log(at).

(iii) The goal now is to set up an orthogonal system of coordinates in which the tangents to the
time axis are the 4-velocities of a family of uniformly accelerated observers. Find the space-like vector
field, S*(7), of unit proper length that is orthogonal to the 4-velocity, v*(7), obtained in part (i). (Take
70 = 0.) Define a transformation to new coordinates, (f,z), by (t,z) = (S°(f) z, S*(f) ). Show that the
metric can be written in the form

—dt? + dz? = — F(z)di® + dz2,

for some function, F(Z). Determine this function. Now expand about some point zg by writing 7 = zo+2
and, at the point Zg, rescale t to t so that, around zj, one has

—dt? + d2? = — (14 ¢(2))?di® + di?.
What is the proper acceleration of an observer at fixed = Zy, following a trajectory parametrized by
t?
Comment: Constant proper acceleration has the nice feature that the inhabitants of the rocket
feel the equivalent of a constant gravitation field inside the rocket. You should observe that ¢(z) has

a nice relation to the Newtonian potential for the gravitational field experienced by the inhabitants of
the rocket, as we saw in class.
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1. (25 pts)

Show that the commutator of covariant derivatives acting on a tensor can be expressed in terms of
the curvature as follows:
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2. (25 pts) A good approximation to the metric outside the surface of the earth is provided by

ds* = —(1 4 2®)dt? + (1 — 2®)dr? + r*(d6? + sin?0 d¢?)

where

is the Newtonian gravitational potential.

A GPS satellite carries an atomic clock in geosynchronous orbit around the earth (this means that
the orbital period is 24 hours, so that the satellite sits along a fixed radial vector through the equator
in the frame that co-rotates with the earth). Global positioning depends on accurately measuring the
time differences between signals broadcast from several such satellites. Attempts to synchronize the
clocks on the satellites with one another and with clocks on the ground run into potential issues with
Doppler shifts and time dilations due to the motion of the satellites and observers on the earth, and
their presence in a gravitational field.

The Doppler shift aspects were covered in HW1 in a similar problem in Minkowski space. Now
consider an observer who sits in their lab on the Earth’s equator and sees 365 days pass on their atomic
clock. How much time has elapsed on the clocks on the satellites? As a first step, calculate the radius
of geosynchronous orbits, and look up the radius of the Earth.
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3. (25 pts) Consider the Friedman-Robertson-Walker (FRW) metric for a 2+1 dimensional expanding
universe of the form o
ds® = gudxtdz” = —dt® + (12(t) hijdax'da?

where p,v = 0,1,2 label the spacetime coordinates; 7,7 = 1,2 label the spatial coordinates; and the
spatial metric h;; depends only on the spatial coordinates. The scale factor a(t) describes the stretching
of proper (i.e. physical) distance between freely falling observers who sit at fixed coordinates z*. For a
homogeneous, isotropic geometry this spatial metric can be written

i ir? :
hijdz'da? = 1 ”A S + r2d6?
— kr?

where k € {—1,0,1}; the above metric then describes a homogeneous Friedman-Robertson-Walker
(FRW) cosmolog;

(a) Calculate the curvature R! jki of the 2d spatial metric h;;, and the (Ricci) scalar curvature RY ij>
and interpret the meaning of the choice of k.

(b) Calculate the curvature R of of the spacetime metric g,,, and the corresponding scalar curva-
ture.
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4. (25 pts) Consider the FRW universe of the previous problem. The 4-velocity of comoving observers
(those who sit at fixed z?) is U = (1,0,0). Let the 4-velocity of a free particle be V# = da#/d)\ in
terms of an affine parameter along its worldline.

(a) Show that the quantity

K? = d?(t) [VuV* + (U VH)?]

is constant along the particle’s (geodesic) worldline.
(b) Show that the magnitude of the spatial velocity of a massive particle is

— K

Vli=—

a

so that particle motions slow down with respect to a family of comoving observers. As a consequence, an
ideal gas of such particles will cool as the universe expands. Similarly, show that for massless particles,

yvr =%

and show that as a consequence photon frequencies redshift in an expanding universe. This is why for
instance the ultraviolet photons, emitted during the epoch when electrons and protons formed bound
states (Hydrogen atoms) in the early universe, are 3°K microwave photons today.

(c) Consider an inflationary universe, with a(t) = ef!* for some (Hubble) constant H. Find the
radius R such that light signals, emitted from » > R at t = 0 in the direction of the origin r = 0,
never arrive at the origin for any finite time ¢. The resulting sphere of radius R defines the horizon, the
surface beyond which the observer at the origin cannot see as long as the universe continues to expand
exponentially.
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1. (20 pts) Recall that the connection coefficient, I',, has the transformation property:
dz?’ dzt Ox¥ o
oxP Ozt Oz’ N

a) Show that this transformation properties implies that the covariant derivative the components of

/
3
F/r r =

17e%

a vector:
+ I VP, (2)

wp

V/, VY = (-)I‘ Vv

is a tensor of type (1,1).
b) Show that the difference of any two affine connections:

_1°

jug

S/);u/ =TI”

pv

is a tensor of type (1,2). In general, we can always strip out of the connection the Christoffel part,
and the leftover bit is a tensor that is independently defined (and not built out of the metric and its

derivatives).
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2. (30 pts) One way of constructing curved spaces is to embed them in a higher dimensional space, e.g.
the two-sphere embedded in R? as the surface of fixed radius. Consider an m-dimensional manifold M
with metric components g;; in some coordinate system 2, i=1,...,m. Let ¥ C M be an n-dimensional
submanifold, i.e. ¥ is itself a manifold embedded in M by a map ¢ : ¥ — M. Let y* a=1,...,n
be a system of coordinates on ¥. Then we can use the embedding functions x?(y%) to induce a metric
on ¥ via the pull-back ¢*(g), essentially the projection of the metric tensor on M onto ¥ using the
embedding;: _ _

ox' ()lf] dydy®

2 (¥ Yy d b=
dé\_ (O g)ubdy du [(]u( ( ))()lj 01]

a) A one-form (i.e. cotangent vector field) © in M is an element of the cotangent space for each point
in M. The components v; of the one-form in a coordinate basis & can be turned into the components
of a one-form v, on ¥ via the pull-back
oz’
aye "

Show that v, indeed transforms as the components of a one-form on 3.

((j*'l7)(’ =

b) Find the analogous formula for the pullback of an arbitrary (0, k) tensor 7.
¢) Consider flat R? in spherical polar coordinates. Find the induced metric on the sphere of radius R.
d) Consider the hyperboloid 1, z*z" = a? in 3d Minkowski spacetime. Show that

(2%, 21, 2%) = a(sinht, cosht cos ¢, cosht sin ¢)

is a valid parametrization of this hyperboloid. Find the corresponding induced metric on this 2d
Lorentzian hyperboloid X, known as two-dimensional de Sitter space. Compute the Christoffel symbols,
Riemann tensor, Ricei tensor, and Ricci scalar of X.

¢) Show that the metrics of the two-sphere S? and the de Sitter space ¥ are related by the analytic
continuation 6 = it + 7/2. This relation is sometimes useful in relating analytic computations on the

sphere to corresponding calculations in de Sitter space (in particle physics this sort of continuation is
known as Wick rotation).

(Note: it is by no means necessary to embed a curved space in fa higher-dimensional lat space, in
fact sometimes such an embedding is impossible; Riemannian geometry is intrinsic to the space in
question and does not refer to any embedding in another space. Rather, the idea here is that, given an
embedding, curved geometry can be constructed by projecting the ambient (in this case flat) geometry
onto the hypersurface using the embedding.)

(@ Prove # ) 93“ V; s on&—]tm/M o

Ae{%n\fmr\ o% (u,l) tensor ‘E 4 Ta =T}A<d'x‘9a

F"Y or\e.-}CWM

V= v dy*

&)Sa Ohe,—‘foyM .




B) As b by (49, = OO ZE oy

et's wite T = T 25 T,

R A A

(‘9 Fhm hi«jher Yo fower dimengon .
R’

SJ;%m swiree
fX; : X = R a0 CuS%
5 = R sh@ su 2 ; > q N2 2
g isy = (%g—) 19 + (% d
2 = R =9
> = @ecs r Rag) d6' + Ristigdd’
AR

[}

R'do™ + R'srodd™

("D Qw A x”

1

~ @ shh' T+ a®osht 0@? + omlovshltsin’<}>

2

= &, $o s \/al)Iol,
(‘1’ ﬂ)g}, = ﬂj (“(SD 24 931 . %° = asuht H"‘ o
X' = o osht oS
ekt o oo
X = acsht sﬂ/l% ‘
g‘t‘t* = = 0?-0951‘)11: + Q./ls)\\}ltt = \al‘

j@‘f = awht



> dsy = —ddtT+ awht dd"
ah“ ghn g}lk
Pr = =h" <89<: 97(’: - ?7(’:‘)
; b Ah o
Rn.‘. = 2 XX —9—7(-'—,—] r;km anru.
okt _ 1 ohy _
lt+ J_)rctT_ B %ﬁl =
Pt = Lp* _ o (§|— - 20" wsht siht
L . ot 20"
$

} A
Rt‘?t = >t + O = O“G)]It - :ET'L’

t gpt ‘)t < 2 2
Ry = —%-‘wﬁt — —csht -t
R = 3R + 57y

I | -
— e + cf‘us}n1t<l 2 cosh -t) =

(&)
iy =

dsy =

K = 3}'\4 wak\

1 | 0 skt skt

a‘esht
ot

= - csht st

= |- 2osh’t =

= Rep.

R'do™ + R'arodd™

_ddt + ekt 43T



9= it+

e +e”
=

= )?1 éoltj + )21 slf(ita—:?) O{CF
= T+ @ esGE) 4

= osht

calit) = gr+e
2

eguol.



3. (20 pts) Prove the following variational identities:
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4. (30 pts) A good approximation to the metric outside the surface of the earth is provided by
ds? = —(1 +2®)dt* + (1 — 2®) [d2? + dy® + d2?|

where

is the Newtonian gravitational potential and

r =12+ 1/2 + 22
(Note: This metric is expressed in slightly different coordinates as compared to HW4 problem 2.)

An astronaut takes a spacewalk untethered from their spaceship. Suppose the spaceship is traveling
a circular orbit in the plane of the equator

r=rgcoswt , y=rgsinwt .

a) Show that this orbit solves the geodesic equations. What is the orbital period w?

b) Derive the equation of geodesic deviation for the separation

i __ o
E = Tastronaut Isp;\ccship

as a function of time ¢, working to leading order in the weak field limit ® <« 1 and assuming non-
relativistic motion — evaluate the Riemann curvature tensor that appears in the geodesic equation, in
this approximation.

¢) Change coordinates to the frame co-rotating with the spaceship (i.e. the coordinate frame in
which the spaceship is always located at the origin of coordinates, with coordinate axes pointing in the
instantaneous radial, azimuthal, and polar directions). Solve the equations of geodesic deviation for
vanishing initial relative velocity (d€/dt);—o = 0, and relative displacement &|;—¢ (i) only in the polar
direction; and (ii) only in the radial direction. (Hint: Look for solutions oscillating with period w, and
for secular (non-oscillating) solutions growing at most linearly in t; then match boundary conditions.
The intuition here is thatwhile the orbit of the spaceship is a circle, the orbit of the astronaut is an
ellipse that, relative to the circle, spends half the orbit at smaller radius and halve the orbit at larger
radius, and so in the co-rotating frame is oscillating up and down. )

d) Verify your result by examining the Keplerian orbit of the astronaut, showing that one obtains
the same result in the given approximation.
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PHYS 364  Pet 6 yuwiry @uchengo ede

1. (25 pts) (See the lecture notes, pp. 48-50, i.e. Lecture 10)

A p-form is a totally antisymmetric tensor of type (0,p). The exterior (or wedge product of a p-
form 7 and a k-form W is the p + k form 7 A W obtained by taking the tensor product and totally
antisymmetrizing on all the indices in a basis. Finally, the exterior derivative dW of a k-form W is a
(k 4 1)-form defined by the completely antisymmetrized covariant derivative of W (one can check that
the choice of a connection I' drops out of this definition due to the antisymmetry, so d is independent
of the choice of metric on M). (See for instance Lecture 10 of the class notes for a few more details.)

The generalization of Stokes’ theorem is that the integral of a total differential (k+ 1)-form dW over
a (k + 1)-dimensional submanifold ¥ is equal to the integral of W over its boundary 0%

/([W:/ w
Ju JoX

a) Prove this result. Note that you already used the 2d version of this result in the magnetic
monopole problem in HW 3, where the integral of the magnetic field strength on either hemisphere
reduced to an integral of the vector potential on the equator.

b) Specialize this expression to three dimensions, with YW a one-form. Show that one recovers the

/(VxA)-dS:j{A-(H’

where dS is the surface element on a two-dimensional submanifold, and the contour integral on the RHS

familiar result

runs over its boundary.
(o) k“F"VM W ould be written as -
W = 5 Wa oy da*A - dx™
s exteror deivative :
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(b) \]_';r I‘YUVM W = W/A . dw = % W dx’n v

= ?y\/\/[/\ dxV' A da* = oL Mdﬁ
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2. (25 pts) Energy bounds

a) Show that the energy-momentum tensor of the electromagnetic field satisfies the dominant energy
condition, and thus also the weak and null energy conditions.

b) Consider a massive scalar field ¢(x) whose action in n + 1 dimensions is

1 I m? .
1 v L 2
Sscalar = /d”+ ry—g |:_5.(//“ ()/L(D 09 — T(i) ]

Derive the energy-momentum tensor 7" of the scalar. Assuming that the scalar is spatially homoge-
neous (¢ = ¢(t)) and the only source of stress-energy, show that the stress tensor has the form of a
perfect fluid, and find the energy density p and pressure P. Under what conditions on ¢, d;¢ does the

scalar field stress-energy satisfy (i) the null energy condition? (ii) the weak energy condition? (iii) the
strong energy condition?
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3. (30 pts) Fluid dynamics
Consider a relativistic fluid with the stress tensor

T;U/ = (/) +[)> ”;1“1/ +1).(/;u/ )

Here u" is the four-velocity of the fluid flow, p its energy density and p its pressure density.

(a) Use conservation of the stress tensor V, 7" = 0 together with conservation of particle number
V,(nu') = 0 (where n is the number density of particles) to show that

dp p+pdn

=0
dr n dr

dp
(p+pay+Vup+ u”l_i' =0

where d/dT = u"V, is the derivative with respect to proper time along a fluid element’s worldline, and
a is the 4-acceleration.

(b) Consider steady flows in the absence of gravity, for which there is some Lorentz frame (¢, x) for
which all the hydrodynamic variables are independent of ¢. Evaluate the time component of (2) in this
frame and combine the result with (1) to show that

#l(53R)] o

Show that the non-relativistic limit of this result is Bernoulli’s theorem: That the quantity

1 . p
—vi4 U+ L
2 pM

is conserved along flow lines, where U is the internal energy per unit mass and pps is the mass density
[related to p and n by p = pym(1+ U) and pyr = mn for particles of mass m].
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4. (30 pts) FRW Cosmology
Consider again the spatially homogeneous metric ansatz from HW4 problem 3
ds? = —dt? + ()~ + r2aq2
s° = —dit” + a”(t) T —fp2 77 %

and the associated Friedmann equations, which are the Einstein equations coupled to a perfect fluid
energy-momentum tensor specialized to the assumption of spatial homogeneity (note that the Killing
vectors related to this homogeneity allow us to drop the dependence of the metric on the associated
coordinates, and allow us to write the field equations in terms of only the scale factor a and its time
derivatives)

. 167G
H? = )p—

n(n—1 2

a

B 871G

OH = n—1

k
(p+P)+—

a
where n is the spatial dimension, and H = (dya)/a is the local logarithmic expansion rate of the spatial
geometry (HW4 problem 3 specialized to n = 2, but the above expressions are generally valid).

(a) Derive these equations for n = 2 (you may use the answers to the previous problems).

(b) Find the equation of motion of the homogeneous scalar field of problem 2 above to find a closed
system of differential equations for homogeneous cosmology. The homogeneous scalar dynamics should
have the form of a damped harmonic oscillator, with the damping proportional to H. This dynamical
damping is known as Hubble friction.

(c) There are two qualitatively distinct dynamical regimes, underdamped and overdamped motion
of the scalar (roughly whether the acceleration or Hubble friction term is the most important time
derivative term in the ¢ equation of motion, respectively). Consider first the overdamped motion. Show
that in this regime, the scale factor a is changing much faster than the scalar field is evolving, by showing
that H2 > G¢2. In this case we can approximate, over time scales set by H (the so-called Hubble time),
that ¢ ~ const, and therefore the m2¢? term in the action behaves (to a good approximation) like
a cosmological constant over scales of order the Hubble time. Solve the equations of motion in this
approximation, taking into account u but ignoring é. This regime of cosmological dynamics is known
as slow-roll inflation.

(d) Now consider the underdamped regime. Show that for G¢? < 1, the scalar field oscillates on a
time scale much smaller than the Hubble time H~'. In this situation, it makes sense to time-average
the field motion to get an averaged equation of state, where p and P are the energy density and pressure
of the homogeneous scalar, averaged over a few oscillation periods. Show that P < p, and solve the
Friedmann equations to leading order in this locally time-averaged approximation. Such a homogeneous
but rapidly oscillating (relative to cosmological time scales) scalar has featured in certain models of dark
matter using a scalar field known as the azion.
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PHYS 364  Peet 7 Yuxiang @ uchicago edu
1. (25 pts) Deflection of light by the Sun

To high precision, the Sun is static and spherical, and we may approximate the line element outside
it by the weak-field form

ds? = —(1 = 2GM/r)dt? + (1 + 2GM/r)(dz? + dy? + dz?)
A photon moving in the equatorial plan z = 0 gets deflected very slightly from the worldline
z=t , y=b= “impact parameter” , z2=0

a) Write down the geodesic equation for the photon’s worldline (parametrized by A), and evaluate
the connection coefficients F’,fp that enter into it.

b) Using the approximation |p¥| < p' ~ p®, show that the geodesic equations can be written

o dz

d?  2GMb  dx )
dx ~ @+t ax

c¢) Integrate this equation, with the initial condition p¥ = 0 at z = —o0, to find the deflection
angle d¢ = p¥/p® at z = 4+o00. Evaluate your result for light deflected by the Sun at grazing incidence
b~ Ry = 7.0 x 10%m, GMg = 1.5 x 10°cm.
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2. (25 pts) The perihelion precession of Mercury

Consider the metric of problem 1 as an approximation to the gravitational field experienced by the
planet Mercury, and treat Mercury as a small test body orbiting in the equatorial plane z = 0 (note:
you may find it easiest to work in spherical spatial coordinates). From the property u - u = —1 of the
four-velocity u, and the fact that p; and p, are conserved (because the Lagrangian of a test body is
independent of the corresponding generalized coordinates), show that the remaining radial dynamics
obeys a constraint of the form

1 /dr\2
&= 5 (_) i Veﬂ(’)

dr
where £ and Vg are expressed in terms of ps, py and the constants G, Mg. Compare the effective
potential Vg to that of Newtonian mechanics for the same problem to find that the two effective
potentials differ.

Keeping only the leading term(s) in the expansion for weak fields and non-relativistic velocities,
estimate the amount by which the potential has been perturbed by comparing the magnitude of the
additional term(s) in Veg to the magnitudes of the terms in the Newtonian effective potential. The
average orbital radius of Mercury is 7o = .387 times the Earth-Sun distance 1AU = 1.5 x 10'3¢m.

Keplerian planetary motion is such that the elliptical orbits don’t precess, i.e. the orbit’s perihelion
(i.e. minimum radius of the orbit) occurs at a fixed angle ¢y that doesn’t change in time. In other
words, for an elliptical Keplerian orbit, the angular frequancy of the radial oscillation equals the angular
frequency of the azimuthal motion. The perturbation of the effective potential changes the dynamics;
the period of the radial motion shifts, and so during the time it takes for the radial motion to go from
perihelion back to perihelion, the change in the azimuthal angle is less than 27. One can process the
estimate of the change in energy to a change in the period of the radial motion, but you need not do
this. This particular contribution to the perihelion shift accounts for most of the obsserved “anomalous”
43” /century shift in ¢g for Mercury. A full GR treatment accounts for all of it.
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3. (25 pts) Gravitational analogues of electromagnetic fields
a) Derive equation 4.4.24 of Wald: The nonrelativistic, weak field approximation to the gravitational
dynamics of a test body is given by
a=-E—-4vxB

where a is the acceleration of the test body, and E, B are expressions analogous to the electric and
magnetic fields in electromagnetism, but with the vector potential A, replaced by ¥,

b) Show that the “gravitational electric and magnetic fields” E and B inside a spherical shell of
mass M and radius R (with GM < R), which is slowly rotating with angular velocity w, are given by

2GM
E=0, B=
0!, 3R w

¢) An observer at the center of this shell parallel propagates along their geodesic a vector v, with
v -u = 0; here u is the tangent vector to their worldline. Show the the spatial components v precess
according to

where 2 = 2B. This effect, first analyzed by Lense and Thirring in 1918, can be interpreted as a
“dragging of inertial frames” by the rotating shell, i.e. the inertial frames tend to get swept along
by the rotation. At the center of the shell, the local standard of “nonrotating”, defined by parallel
propagation along a geodesic, differs from what observers at infinity would regard as “nonrotating”.
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4. (25 pts) Falling into a black hole
Consider an observer sitting at constant spatial Schwarzschild coordinates (7¢, 6o, ¢o) near a Schwarzschild

black hole of mass M, with metric

2
dr®

Jo(r)

The observer drops a probe of mass m from rest, which emits electromagnetic radiation at a constant
wavelength Aemit (in the probe’s rest frame).

ds® = — fo(r)dt® +

+7-2(IQ§ 5 Jo= (1 - chl)

a) Calculate the coordinate speed dr/dt of the probe, as a function of r. For this you will need to
solve the geodesic equations; use as many conservation laws as possible to simplify your life.

b) Show that the probe reaches the singularity at » = 0 in finite proper time.

¢) Calculate the wavelength \ops measured by the observer at 7, as a function of the radius rem;t at
which the radiation is emitted.

d) Show that at late times, the redshift of the observed radiation grows exponentially:

:‘0& X €xXp [tobs/T]
emit
Find an expression for the time constant 7" in terms of the black hole mass M.

Note that all the received radiation comes from the probe before it crosses the black hole’s event
horizon; after the probe crosses the horizon, even the radially outward directed radiation falls into the
singularity along with the probe.
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1. (25 pts) Background Field Method and Gravitational Radiation

Consider the split of the metric g into a background g and a small fluctuation dg = xh
Guv = .(7/11/ + Nh#u

where £2 = 327G.

One can use the above split into background and perturbation to set up a systematic procedure
to solve the field equations order by order in k. To begin, one can plug the above metric into the
Einstein-Hilbert action and expand in powers of k£ up to and including second order. At zeroth order in
the action, one has the Einstein-Hilbert action evaluated at §. At first order, one can think of huy as an
arbitrary variation of the metric in the vicinity of g,,: xh,, multiplies the Einstein equations, and one
can then ask that the background g satisfies the Einstein field equations. The action at second order in
% has the structure of a kinetic term for the perturbation h

K2 ~ uvof
Sy = W/\/—ghm,A’ ihmg

where A#¥®8 is a second-order differential operator on (0,2) tensors. If one varies this action with
respect to h, one gets the (wave) equation of motion satisfied by small fluctuations (such as gravitational
waves) around the background metric g. If one varies it with respect to g, one gets (after appropriate
integrations by parts to write things in terms of first dervatives of h only) what can be thought of as
the “stress-energy tensor” of gravitational perturbations.

(As an aside, the general structure of the expansion allows one to set up a perturbation theory for
a solution of the Einstein equations in a power series in k, starting from an existing solution (the one
with the metric g). At lowest order, one solves the linearized field equations. At next order there will
be second-order, O(k) corrections to h, as well as terms quadratic in the first-order perturbation found
already; one solves the resulting linear equation for the former with the latter as a source. At order
n + 1, there is an O(k™) correction to h that appears linearly, sourced by a polynomial of terms in
already found lower corrections. At each order one is solving a linear equation with a specified source,
a problem much easier that solving a nonlinear PDE.)

Consider now this second variation of the Einstein-Hilbert action in the perturbation h,,. (HW5
considered the first variation of the connection and curvature, etc, which were used in class to find
the equations of motion) Assume as above that at zeroth order, the background g satisfies the vacuum
Einstein equations. The explicit form of the action expanded to this order can be written

i % / \/Tg[(vahw)(v“hﬂ”) — (Vah)(V2h) +2(V h) (V hgy) — 2(%11(,,3)(6“11"»”)]

where indices are raised and lowered with respect to the background metric, V is the covariant derivative
with respect to the background, h = hug_(}"‘ﬁ is the trace of the perturbation, etc.

One can show (but you need not) that varying this action with respect to the perturbation h, the
result is the LHS of the Einstein equations linearized around the background g; so indeed it is the action
that describes gravitational waves in the geometry g, .




a) Vary with respect to the background metric to derive what one might think of as the “energy-
of the gravitational fluctuation (please note that the interpretation of this

1
momentum tensor t(h

quantity as an energy-momentum tensor is fraught with subtleties; see Carroll section 7.6 or Wald

section 4.4; nevertheless, to the order we are working it’s fine to do so). To simplify the analysis, after
making the variation of g, set this background equal to the Lorentz metric 1 (so e.g. the covariant
derivative becomes the ordinary derivative), and impose the DeDonder gauge.

b) Evaluate this energy-momentum tensor on gravitational quadrupole radiation from the bin
star system discussed in class (two stars of equal mass M and orbital radius R). Integrate the flus
gravitational radiation energy over a sphere at asymptotically large radius, and average your result over
an orbital period of the source to find the average power radiat Vvt ina stem. To simplify your
life, first show that asymptotically, the terms contributing to the energy ﬂu\ come from the oscillating
quadrupole and not the static ® = 2GM /r monopole gravitational field of the source.

¢) The first concrete evidence for gravitational radiation came from observations in the 1970s of
orbital decay of the Hulse-Taylor binary pulsar. Approximate it as the binary system above, with two
solar mass stars at an orbital radius of R = 10%km, and estimate the rate of 01b1t(11 decay ;R using
conservation of energy.
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2. (25 pts) The Chandrasekhar limit

A “main sequence” star such as the Sun maintains equilibrium via the balance of gravitational
attraction and thermal pressure. The latter is fueled by nu burning in the star’s core; eventually
though, the fuel runs out and the star collapses. What is i e? The answer depends on the star’s
mass. Stars such as the sun form white dwarfs, where the pressure supporting the star is degeneracy
pressure of the Fermi repulsion of electrons. This problem explores the physics of white dwarf stars.

The total energy can be written £ = K + U, where K is the total kinetic energy of the degenerate
electrons and U is the gravitational potential energy. Let us make two simplifying assumptions: (1) the
density of the star is uniform; and (2) the linearized (Newtonian) approximation to gravity.

a) Show that
3GM?
"5 R
by assembling the star by depositing a sequence of radial shells. Here M is the mass of the star and R
is its radius.

=

b) The constant phase-space density of a degenerate Fermi gas means that

dN = % pldp . A= (37r2)1/3h

where V = "1:—;”}?3 is the volume of the star. This leads to

e A(g)l/:s

Show that, assuming that the electron gas is non-relativistic, the kinetic energy of the star is
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¢) The atomic nuclei in a white dwarf such as C'? and O'¢ have twice as many nucleons as electrons;
thus M = 2N'm,, where m,, is the proton mass. Show that in the non-relativistic approximation

A B

) e Y
R? R

where

~ 20

3 (9;)2/%_2(]\[)5/3

T
B = SGM?
5

m \my

Find the value R, of the star’s radius that minimizes the total energy F.

d) If the mass is too large, however, the kinetic energy needed to generate the pressure supporting
the star is such that the electrons become relativistic. Now use the relativistic kinetic energy of the
electron to show that

- 3Ve

P, P 2 99 ]
APV

[p“},v +mcpp+...

so that the energy now has the form

C
E~—+ DR ;
R+

find the constant C. Show that for

15 [57(he/G)3)/2

64 m%

the constant C' becomes negative and there is no stable solution. The mass Mg is known as the
Chandrasekhar limit, after the UChicago faculty member who derived it in 1931. A more accurate
calculation using a more realistic equation of state leads to the Chandrasekhar mass M¢c = 1.4Mg.
For stars with mass not too much larger than M, the endpoint of collapse is a neutron star, with the
electrons and protons combining into neutrons (and neutrinos which escape the star), and the pressure
being supplied by the degenerate Fermi gas of neutrons. Eventually, when the mass exceeds about 3M,,
the neutron degeneracy pressure fails to support the star, and it collapses into a black hole.

M> Mg = ~1.72My |

for M > M = 172 Mo
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