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• Characterization of  TWPA

• Enhancing sensitivity of  EPR

• Setting up of  HEMT
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The JTWPA is implemented
as a nonlinear lumped-element transmission line; one unit cell consists of a Josephson junction with critical
current I0 ¼ 4:6 mA and intrinsic capacitance CJ ¼ 55 fFwith a capacitive shunt to ground C ¼ 45 fF. Every
third unit cell includes a lumped-element resonator designed with capacitance Cr ¼ 6 pF and inductance
Lr = 120 pH, with coupling strength set by a capacitor Cc ¼ 20 fF. The value of C in the resonator-loaded
cell is reduced to compensate for the addition of Cc.
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Motivation

Quantum limit of  amplification:

minimum amount of  added noise to quadratures

Sensitive measurements

Traditional JPA: 
single frequency measurements
low bandwidth and saturation power
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A near–quantum-limited Josephson traveling-
wave parametric amplifier C. Macklin et al.
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Resonant phase matching

Phase shift due to a shunt resonator to ground

Traveling wave parametric amplifier with 
Josephson junctions using minimal resonator 
phase matching T.C. White et al.

simulated signal phase and A vs f
for different numbers of  resonators
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TWPA gain

• linear superconducting transmission line

z: the length along the transmission line
γ: nonlinearity, the ratio of  drive current to junction
critical current
κ: effective dispersion
Δk: difference in wave vectors, phase mismatch

• Proper phase matching (κ=0)

nonlinear phase shift of the pump



Phase mismatch and gain.
7.157 GHz and 6.5 GHz versus pump 
power, with a signal at 6.584 GHz.

A near–quantum-limited Josephson 
traveling-wave parametric amplifier C. 
Macklin et al.
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When a strong pump tone is applied, the traveling waves are slowed down due to an increase in the junction inductance and a decrease in the phase velocity. The pump tone is slowed down less than the signal and idler tones due to the difference between the self-phase modulation and cross-phase modulation effects which causes a mismatch Δk > 0.
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1-dB Compression point Measured gain spectrum when the pump is detuned
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-80 dBm on chip



Room temperature calibration

apply cryogenic switches in the future for better comparision

-87 dB @ 4 GHz
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Pump frequency/power search

Sweep pump frequency from 5 GHz to 6.4 GHz in 10 MHz step, pump power -14 dBm

Sweep pump power from -15 dBm to 0 dBm in 0.1 dB step
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Weird behavior without shield

Without shield, with circulator

Critical current vs magnetic flux

The Josephson effect: 50 years of science 
and technology. Paul A Warburton
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Pump frequency/power search (port power: -30 dBm)

Sweep pump frequency from 5 GHz to 6.4 GHz in 1 MHz step, pump power 5 dBm

Sweep pump power from -20 dBm to 15 dBm in 0.1 dB step @6.31 GHz
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With magnetic shield, with circulator

6.34 GHz
Dispersive feature
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Pump power linecut

Leakage of  pump power into higher harmonics, which may 
reduce gain
the onset of  a shock wave

Port power: 0 dBm Port power: -30 dBm













Conclusion

• We could have a signal gain of  10 dB with -75 dBm, 6.31 GHz pump on chip

• Might exist saturation of  room temperature amplifiers

• Even with field off, put on magnetic shield to ensure normal operation
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2 MHz span
1601 points
->up to 1.25 kHz sensitivity

slow and noisy
uncertainty of  the size of  
frequency steps
contain much unnecessary data



VNA monitoring result of  Nd:YSO

Ramp up from 75 - 375 mT, 0.2 mT step size, D2 direction



VNA monitoring result of  Nd:YSO

Ramp up from 75 - 375 mT, 0.2 mT step size, D2 direction

~ 4000 Hz resolution
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Output of  power detector V(w)



Lock-in display

5096.57 MHz

5098.66 MHz
Unit:V

①

②

③

Output of  power detector V(w)
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Best deviation vs κi+κeCavity slope vs deviation frequency

System optimization

Feature distorted at large deviation

Slope goes down
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Experimental result

Simulated frequency shift

10 times enhancement of  sensitivity

f0

f0+300 Hz

f0- 300 Hz

To further enhance sensitivity

① a feedback loop to stabilize the RF source frequency

② a better power detector

③ source with better FM control

0.1 V rms noise
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Cavity perturbation by superconducting films in microwave 
magnetic and electric fields. D.-N. Peligrad et al.
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Complex frequency shift

Cavity perturbation by superconducting films in microwave 
magnetic and electric fields. D.-N. Peligrad et al.

a4/a2 vs Q
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Necessity of  HEMT

• The noise figure of  an amplification chain largely depends on the first amplifier

… =

Friis formula:



DC connection

• Split the 25 pins into three parts



DC connection

• Split the 25 pins into three parts



Room temperature amplification

• To get better curve, use VNA with calibration



Noise figure measurement

Y factor method

Traveling wave parametric amplifier with Josephson 
junctions using minimal resonator phase matching. 
Supplemental information. T.C. White et al.
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