Summer Research Summary

10/17/2019

Yuxiang Pei

- Characterization of TWPA
- Enhancing sensitivity of EPR
- Setting up of HEMT

Quantum limit of amplification:

minimum amount of added noise to quadratures

Quantum limit of amplification:

minimum amount of added noise to quadratures

Sensitive measurements

Quantum limit of amplification:
minimum amount of added noise to quadratures

Sensitive measurements

Traditional JPA: single frequency measurements low bandwidth and saturation power

$$C\varphi_0 \frac{d^2\delta(t)}{dt^2} + \frac{\varphi_0}{Z_c} \frac{d\delta(t)}{dt} + I_0 \sin(\delta(t)) = I_S(t)$$

$$C\varphi_0 \frac{d^2\delta(t)}{dt^2} + \frac{\varphi_0}{Z_c} \frac{d\delta(t)}{dt} + I_0 \sin(\delta(t)) = I_S(t)$$

$$\frac{d^2\delta(t)}{dt^2} + 2\gamma \frac{d\delta(t)}{dt} + \omega_0^2 \left(\delta(t) - \frac{\delta^3(t)}{6}\right) - \omega_0^2 \frac{I_p}{I_0} \cos(\omega_p t) = \frac{2}{C\varphi_0 Z_c} v_s^{in}(t)$$

$$C\varphi_0 \frac{d^2\delta(t)}{dt^2} + \frac{\varphi_0}{Z_c} \frac{d\delta(t)}{dt} + I_0 \sin(\delta(t)) = I_S(t)$$

$$\frac{d^2\delta(t)}{dt^2} + 2\gamma \frac{d\delta(t)}{dt} + \omega_0^2 \left(\delta(t) - \frac{\delta^3(t)}{6}\right) - \omega_0^2 \frac{I_p}{I_0} \cos(\omega_p t) = \frac{2}{C\varphi_0 Z_c} v_s^{in}(t)$$

wave parametric amplifier C. Macklin et al.

$$\frac{\partial a_s}{\partial x} - i\kappa_s a_i^* e^{i\left(\Delta k_L + 2\alpha_p - \alpha_s - \alpha_i\right)x} = 0$$

$$\frac{\partial a_i}{\partial x} - i\kappa_i a_s^* e^{i(\Delta k_L + 2\alpha_p - \alpha_s - \alpha_i)x} = 0$$

$$\frac{\partial a_s}{\partial x} - i\kappa_s a_i^* e^{i\left[\Delta k_L + 2\alpha_p - \alpha_s - \alpha_i\right]x} = 0$$

$$\frac{\partial a_i}{\partial x} - i\kappa_i a_s^* e^{i(\Delta k_L + 2\alpha_p - \alpha_s - \alpha_i)x} = 0$$

Phase shift due to a shunt resonator to ground

$$\frac{\partial a_s}{\partial x} - i\kappa_s a_i^* e^{i\left(\Delta k_L + 2\alpha_p - \alpha_s - \alpha_i\right)x} = 0$$

$$\frac{\partial a_i}{\partial x} - i\kappa_i a_s^* e^{i(\Delta k_L + 2\alpha_p - \alpha_s - \alpha_i)x} = 0$$

Phase shift due to a shunt resonator to ground

simulated signal phase and A vs f for different numbers of resonators

Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching T.C. White et al.

$$G_s = \cosh^2(gz) + \left(\frac{\kappa}{2g}\right)^2 \sinh^2(gz)$$

$$g = \sqrt{\frac{k_s k_i}{k_p^2} (\gamma k_p)^2 - (\kappa/2)^2}$$

$$\kappa = 2\gamma k_p + k_s + k_i - 2k_p$$

z: the length along the transmission line γ : nonlinearity, the ratio of drive current to junction critical current

к: effective dispersion

 Δ k: difference in wave vectors, phase mismatch

linear superconducting transmission line

$$G_s = 1 + (\gamma k_p z)^2 = 1 + \phi_{nl}^2$$

nonlinear phase shift of the pump

$$G_s = \cosh^2(gz) + \left(\frac{\kappa}{2g}\right)^2 \sinh^2(gz)$$

$$g = \sqrt{\frac{k_s k_i}{k_p^2} (\gamma k_p)^2 - (\kappa/2)^2}$$

$$\kappa = 2\gamma k_p + k_s + k_i - 2k_p$$

z: the length along the transmission line γ: nonlinearity, the ratio of drive current to junction critical current

к: effective dispersion

 Δ k: difference in wave vectors, phase mismatch

• linear superconducting transmission line

$$G_s = 1 + (\gamma k_p z)^2 = 1 + \phi_{nl}^2$$

nonlinear phase shift of the pump

Proper phase matching (K=0)

$$G_s = \cosh^2(\gamma k_p z) \approx \frac{\exp(2\phi_{nl})}{4}$$

$$G_s = \cosh^2(gz) + \left(\frac{\kappa}{2g}\right)^2 \sinh^2(gz)$$

$$g = \sqrt{\frac{k_s k_i}{k_p^2} (\gamma k_p)^2 - (\kappa/2)^2}$$

$$\kappa = 2\gamma k_p + k_s + k_i - 2k_p$$

z: the length along the transmission line γ: nonlinearity, the ratio of drive current to junction critical current

к: effective dispersion

 Δ k: difference in wave vectors, phase mismatch

Phase mismatch and gain.

7.157 GHz and 6.5 GHz versus pump power, with a signal at 6.584 GHz.

A near-quantum-limited Josephson traveling-wave parametric amplifier C. Macklin et al.

Phase mismatch and gain.

7.157 GHz and 6.5 GHz versus pump power, with a signal at 6.584 GHz.

A near—quantum-limited Josephson traveling-wave parametric amplifier C. Macklin et al.

1-dB Compression point

Phase mismatch and gain.

7.157 GHz and 6.5 GHz versus pump power, with a signal at 6.584 GHz.

A near—quantum-limited Josephson traveling-wave parametric amplifier C. Macklin et al.

1-dB Compression point

Measured gain spectrum when the pump is detuned

Current Setup

Current Setup

Current Setup

Room temperature calibration

apply cryogenic switches in the future for better comparision

Without shield

Dispersive feature

Without shield

Dispersive feature

6.34 GHz

Without shield

Dispersive feature

Pump frequency/power search

Pump frequency/power search

Sweep pump frequency from 5 GHz to 6.4 GHz in 10 MHz step, pump power -14 dBm

Pump frequency/power search

Sweep pump frequency from 5 GHz to 6.4 GHz in 10 MHz step, pump power -14 dBm Sweep pump power from -15 dBm to 0 dBm in 0.1 dB step

Weird behavior without shield

Without shield, with circulator

Weird behavior without shield

Without shield, with circulator

Critical current vs magnetic flux

The Josephson effect: 50 years of science and technology. Paul A Warburton

With magnetic shield, without circulator

With magnetic shield, without circulator

Dispersive feature

With magnetic shield, without circulator

Dispersive feature

With magnetic shield, without circulator

Dispersive feature

Pump frequency/power search (port power: 0 dBm)

Sweep pump frequency from 5 GHz to 6.4 GHz in 1 MHz step, pump power 7.5 dBm

Sweep pump power from -20 dBm to 15 dBm in 0.1 dB step @6.31 GHz

Pump frequency/power search (port power: -30 dBm)

Sweep pump frequency from 5 GHz to 6.4 GHz in 1 MHz step, pump power 5 dBm

Sweep pump power from -20 dBm to 15 dBm in 0.1 dB step @6.31 GHz

Pump power linecut

Port power: 0 dBm

Pump power linecut

Port power: 0 dBm

Port power: -30 dBm

With magnetic shield, with circulator

With magnetic shield, with circulator

Dispersive feature

signal and idler

Four wave mixing: $\omega i = 2\omega p - \omega s$

signal and idler

Four wave mixing: $\omega i = 2\omega p - \omega s$

Pump off

signal and idler

Four wave mixing: $\omega i = 2\omega p - \omega s$

Pump off

Pump on

Pump frequency/power search (port power: 0 dBm)

Sweep pump frequency from 5 GHz to 6.4 GHz in 1 MHz step, pump power 0 dBm

Sweep pump power from -20 dBm to 15 dBm in 0.1 dB step @6.31 GHz

Pump frequency/power search (port power: 0 dBm)

Sweep pump frequency from 5 GHz to 6.4 GHz in 1 MHz step, pump power 7.5 dBm

Sweep pump power from -20 dBm to 15 dBm in 0.1 dB step @6.31 GHz

Pump power linecut

Port power: -30 dBm

Pump power linecut

Leakage of pump power into higher harmonics, which may reduce gain the onset of a shock wave

Conclusion

- We could have a signal gain of 10 dB with -75 dBm, 6.31 GHz pump on chip
- Might exist saturation of room temperature amplifiers
- Even with field off, put on magnetic shield to ensure normal operation

- Characterization of TWPA
- Enhancing sensitivity of EPR
- Setting up of HEMT

Motivation

Er⁺³: Y₂O₃ has long spin coherence time and large, anisotropic g-factor

Motivation

Er⁺³: Y₂O₃ has long spin coherence time and large, anisotropic g-factor

$$\mathcal{H} = \mu_B(B.g_e.S) + S.A.I + I.Q.I - \mu_N(B.g_n.I)$$

EPR working principle

Absorption of photon increases the cavity loss rate

$$hv = E = g\mu_B B$$

EPR working principle

Absorption of photon increases the cavity loss rate

EPR working principle

Absorption of photon increases the cavity loss rate

2 MHz span1601 points->up to 1.25 kHz sensitivity

slow and noisy uncertainty of the size of frequency steps contain much unnecessary data

VNA monitoring result of Nd:YSO

Ramp up from 75 - 375 mT, 0.2 mT step size, D2 direction

VNA monitoring result of Nd:YSO

Ramp up from 75 - 375 mT, 0.2 mT step size, D2 direction

~ 4000 Hz resolution

Lock-in setup

Lock-in setup

Cavity output: $a_1(t) = V_1 T(w(t)) * cos[(w_c + \Delta * cos(w_d t))t]$

Quasi-sinusoid error signal, demodulated by lock-in amp

Lock-in setup

Cavity output: $a_1(t) = V_1 T(w(t)) * cos[(w_c + \Delta * cos(w_d t))t]$

Quasi-sinusoid error signal, demodulated by lock-in amp

$$T(w) = \frac{k_i - k_e + 2i(w - w_0)}{k_i + k_e + 2i(w + w_0)}$$

Output of power detector V(w)

Output of power detector V(w)

Output of power detector V(w)

Output of power detector V(w)

Lock-in display

$$a_1 = \frac{w_d}{\pi} \int_0^{\frac{w_d}{2\pi}} V(w) * cos(w_d t)$$

System optimization

Feature distorted at large deviation Slope goes down

System optimization

Feature distorted at large deviation Slope goes down

Cavity slope vs deviation frequency

System optimization

Experimental result

Simulated frequency shift

10 times enhancement of sensitivity

Experimental result

Simulated frequency shift

10 times enhancement of sensitivity

To further enhance sensitivity

- 1 a feedback loop to stabilize the RF source frequency
- 2 a better power detector
- 3 source with better FM control

0.1 V rms noise

Complex frequency shift

$$\frac{\Delta \tilde{f}}{f} = \frac{\Delta f}{f} + i\Delta \frac{1}{2Q}$$

Cavity perturbation by superconducting films in microwave magnetic and electric fields. D.-N. Peligrad et al.

Complex frequency shift

$$\frac{\Delta \tilde{f}}{f} = \frac{\Delta f}{f} + i\Delta \frac{1}{2Q}$$

Cavity perturbation by superconducting films in microwave magnetic and electric fields. D.-N. Peligrad et al.

$$a_{1} = \frac{w_{d}}{\pi} \int_{0}^{\frac{w_{d}}{2\pi}} V(w) * cos(w_{d}t)$$

$$a_{2} = \frac{w_{d}}{\pi} \int_{0}^{\frac{w_{d}}{2\pi}} V(w) * cos(2w_{d}t)$$

$$a_{3} = \frac{w_{d}}{\pi} \int_{0}^{\frac{w_{d}}{2\pi}} V(w) * cos(3w_{d}t)$$

$$a_{4} = \frac{w_{d}}{\pi} \int_{0}^{\frac{w_{d}}{2\pi}} V(w) * cos(4w_{d}t)$$

Complex frequency shift

$$\frac{\Delta \tilde{f}}{f} = \frac{\Delta f}{f} + i\Delta \frac{1}{2Q}$$

Cavity perturbation by superconducting films in microwave magnetic and electric fields. D.-N. Peligrad et al.

$$a_4/a_2$$
 vs Q

$$a_{1} = \frac{w_{d}}{\pi} \int_{0}^{\frac{w_{d}}{2\pi}} V(w) * cos(w_{d}t)$$

$$a_{2} = \frac{w_{d}}{\pi} \int_{0}^{\frac{w_{d}}{2\pi}} V(w) * cos(2w_{d}t)$$

$$a_{3} = \frac{w_{d}}{\pi} \int_{0}^{\frac{w_{d}}{2\pi}} V(w) * cos(3w_{d}t)$$

$$a_{4} = \frac{w_{d}}{\pi} \int_{0}^{\frac{w_{d}}{2\pi}} V(w) * cos(4w_{d}t)$$

- Characterization of TWPA
- Enhancing sensitivity of EPR
- Setting up of HEMT

Necessity of HEMT

• The noise figure of an amplification chain largely depends on the first amplifier

Necessity of HEMT

• The noise figure of an amplification chain largely depends on the first amplifier

Friis formula:

$$T_{sys} = T_1 + \frac{T_2}{G_1} + \frac{T_3}{G_1 G_2} + \dots + \frac{T_N}{G_1 G_2 \dots G_{N-1}}$$

$$T_1, G_1$$
 T_2, G_2 T_N, G_N T_{sys}, G_{sys}

DC connection

• Split the 25 pins into three parts

DC connection

• Split the 25 pins into three parts

Room temperature amplification

• To get better curve, use VNA with calibration

Noise figure measurement

Y factor method

Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching. Supplemental information. T.C. White et al.

Test board & IQ demodulator

• 10 mil width, 7.5 mil gap, 7.1 mil thickness

Test board & IQ demodulator

• 10 mil width, 7.5 mil gap, 7.1 mil thickness

Test board & IQ demodulator

• 10 mil width, 7.5 mil gap, 7.1 mil thickness

Chicago

New York

Ann Arbor

Seul

