

微波阻抗显微镜的搭建及改进

The Construction and Improvement of a Microwave Impedance Microscope

06/10/2020

裴宇翔

- 微波电路基础
- 微波探测原理
- 微波阻抗显微系统

普通导线与传输线

普通导线的电磁场分布

双导线模型

双导线横截面内的电场磁场分布

传输线上的电压和电流

同轴线的中心导体和外部导体

前向波 后向波
$$U(z) = U_f e^{-\gamma z} + U_r e^{\gamma z}$$

$$I(z)Z_0 = U_f e^{-\gamma z} - U_r e^{\gamma z}$$
特征阻抗

带负载的传输线

反射系数
$$\Gamma(L) = \frac{U_r e^{i\beta L}}{U_f e^{-i\beta L}} = \Gamma(0)e^{-2i\beta L} = \frac{Z_A - Z_0}{Z_A + Z_0}$$

- 微波电路基础
- 微波探测原理
- 微波阻抗显微系统

共振匹配单元

MIM 测头部分示意图

Figure 1.8. (a,b) Single-stub and lumped-element impedance matching networks for shielded cantilever probes. (c) Half-wavelength resonator matching network for TF-based sensors.

共振匹配单元的传输线模型

$$\Gamma_{in} = \Gamma_{tip} e^{-2i\beta L}$$

$$Z = Z_{in} + (i\omega C_{var})^{-1} = \frac{1+\Gamma_{in}}{1-\Gamma_{in}} + \frac{1000}{2\pi i f C_{var}}$$

$$S_{11} = \frac{Z - Z_0}{Z + Z_0}$$

全频段共振峰分布

S₁₁ 关于频率 f 的图像(C=9 pF, L=15 cm)

共振峰随参数变化

变化电容C

变化长度L

共振峰值关于C&L二维热图

峰值关于可调电容C与传输线长度L的二维热图

共振峰对样品的响应

L = 19.5 cm
$$C_{Var} = 1.8 \text{ pF}$$

$$Q = \frac{1143.8MHz}{0.132MHz} = 8665$$

系统在 1.14 GHz 附近的共振峰

共振峰对样品电容的响应

$$Z_{sample} = R_{sample} + C_{sample} + L_{sample}$$

$$Z_{total} = (\frac{1}{Z_{tip}} + \frac{1}{Z_{sample}})^{-1} = (\frac{1}{Z_{tip}} + \frac{1}{R_s + i\omega L_s + (i\omega C_s)^{-1}})^{-1}$$

变化Cs (Rs=0)

变化Cs (Rs=100 Ω)

电阻灵敏窗口

电容灵敏窗口

共振峰对样品电阻的响应

Amplitude vs R variation frequency/GHz Rsample/kOhm 峰值关于Rs的变化关系

抵消(Cancellation)的实现

$$V_{total} = k * V_{cancell} + V_{ref} = \frac{kV_0}{4} (S_{11} + e^{i\varphi} * 10^{-0.05x})$$

抵消后共振峰与x和φ的依赖关系

抵消后共振峰与x和φ的二维热图

抵消后共振峰随样品电容的变化

抵消后共振峰随样品电阻的变化

MIM 信号的计算

$$V_{total} = kA * V_{cancell} + V_{ref} = \frac{kAV_0}{4}(S_{11} + e^{i\varphi} * 10^{-0.05x})$$

抵消后MIM信号关于样品电阻、电容的变化图

无抵消MIM 信号关于样品电阻、电容的变化图

- 微波电路基础
- 微波探测原理
- 微波阻抗显微系统

微波分辨原理

传播波 —— 隐失波

- 实部虚部高对比度
- 非接触,非破坏
- 长波长,亚表面探测

量子的 —— 经典的

$$k_0^2 = \omega^2 \epsilon_0 (\epsilon' + \epsilon'') \mu$$

$$k_0^2 = \omega^2 \epsilon_0 (\epsilon' + i \frac{\sigma}{\omega \epsilon_0}) \mu$$

微波显微测头

扫描微波导电探针 SMIM150-G5 示意图

共振匹配单元的实现

微波显微测头

bond pad 直接连接至半波长线的内芯

LabVieW控制程序界面

LabVieW控制抵消过程

实际测试共振匹配单元

f = 1.242 GHz

 $\Delta f = 1.13 \text{ MHz}$

 $Q = f/\Delta f = 1100$

网络分析仪测试电路

金属条带样品扫描

起伏约50 nm

绝缘区域导电区域

金属条带样品扫描

硅掺杂样品扫描

起伏约2 nm

IFX掺杂样品扫描

信号截面

埋在绝缘体下方的金属条带样品扫描

氮化硅下方的 Pt 对应 MIM 扫描信号

扫描单层导电石墨烯图像

MIM I channel

扫描 LaAlO₃/SrTiO₃ 界面处导电纳米线的图像

